3dtrial/renderer3/hrend/render.go

251 lines
7.2 KiB
Go

package hrend
import (
// "log"
// "math"
)
type ObjectDef struct {
Model *ObjModel
Texture Framebuffer // This needs to go somewhere else eventually!
Pos Vec3f
LookVec Vec3f
Color Vec3f
Scale float32
Lighting bool
}
func NewObjectDef(model *ObjModel, texture Framebuffer) *ObjectDef {
result := ObjectDef{
Model: model,
Texture: texture,
LookVec: Vec3f{X: 0, Y: 0, Z: -1},
Scale: 1,
Lighting: true,
}
return &result
}
// Figure out the minimum bounding box for a triangle defined by
// these vertices. Returns the top left and bottom right points,
// inclusive
func ComputeBoundingBox(v0, v1, v2 Vec2i) (Vec2i, Vec2i) {
return Vec2i{min(v0.X, v1.X, v2.X), min(v0.Y, v1.Y, v2.Y)},
Vec2i{max(v0.X, v1.X, v2.X), max(v0.Y, v1.Y, v2.Y)}
}
func ComputeBoundingBoxF(v0, v1, v2 Vec3f) (Vec3f, Vec3f) {
return Vec3f{min(v0.X, v1.X, v2.X), min(v0.Y, v1.Y, v2.Y), min(v0.Z, v1.Z, v2.Z)},
Vec3f{max(v0.X, v1.X, v2.X), max(v0.Y, v1.Y, v2.Y), max(v0.Z, v1.Z, v2.Z)}
}
// The generic edge function, returning positive if P is on the right side of
// the line drawn between v1 and v2. This is counter clockwise
func EdgeFunction(v1, v2, p Vec3f) float32 {
return (p.X-v1.X)*(v2.Y-v1.Y) - (p.Y-v1.Y)*(v2.X-v1.X)
}
// This computes the x and y per-pixel increment for the line going
// between v1 and v2 (also counter clockwise)
func EdgeIncrement(v1, v2 Vec3f) (float32, float32) {
return (v2.Y - v1.Y), -(v2.X - v1.X)
}
// The generic edge function, returning positive if P is on the right side of
// the line drawn between v1 and v2. This is counter clockwise
func EdgeFunctioni(v1, v2, p Vec2i) int {
return (p.X-v1.X)*(v2.Y-v1.Y) - (p.Y-v1.Y)*(v2.X-v1.X)
}
// This computes the x and y per-pixel increment for the line going
// between v1 and v2 (also counter clockwise)
func EdgeIncrementi(v1, v2 Vec2i) (int, int) {
return (v2.Y - v1.Y), -(v2.X - v1.X)
}
func ZClip(v0f Vec3f, v1f Vec3f, v2f Vec3f) bool {
maxz := max(v0f.Z, v1f.Z, v2f.Z)
return maxz < -1 || maxz > 1
}
func TriangleFlat(fb *RenderBuffer, color *Vec3f, v0f Vec3f, v1f Vec3f, v2f Vec3f) {
v0 := v0f.ToVec2i()
v1 := v1f.ToVec2i()
v2 := v2f.ToVec2i()
//r, g, b := Uint2Col(color)
boundsTL, boundsBR := ComputeBoundingBox(v0, v1, v2)
if boundsBR.X < 0 || boundsBR.Y < 0 || boundsTL.X >= int(fb.Width) || boundsTL.Y >= int(fb.Height) {
return
}
parea := EdgeFunctioni(v0, v1, v2)
if parea <= 0 {
return
}
if boundsTL.Y < 0 {
boundsTL.Y = 0
}
if boundsTL.X < 0 {
boundsTL.X = 0
}
if boundsBR.Y >= int(fb.Height) {
boundsBR.Y = int(fb.Height - 1)
}
if boundsBR.X >= int(fb.Width) {
boundsBR.X = int(fb.Width - 1)
}
// Where to start our scanning
pstart := Vec2i{boundsTL.X, boundsTL.Y}
invarea := 1 / float32(parea)
w0_y := EdgeFunctioni(v1, v2, pstart)
w1_y := EdgeFunctioni(v2, v0, pstart)
w2_y := EdgeFunctioni(v0, v1, pstart)
w0_xi, w0_yi := EdgeIncrementi(v1, v2)
w1_xi, w1_yi := EdgeIncrementi(v2, v0)
w2_xi, w2_yi := EdgeIncrementi(v0, v1)
r := byte(255 * color.X)
g := byte(255 * color.Y)
b := byte(255 * color.Z)
for y := uint(boundsTL.Y); y <= uint(boundsBR.Y); y++ {
w0 := w0_y
w1 := w1_y
w2 := w2_y
for x := uint(boundsTL.X); x <= uint(boundsBR.X); x++ {
if (w0 | w1 | w2) >= 0 {
w0a := float32(w0) * invarea
w1a := float32(w1) * invarea
w2a := float32(w2) * invarea
pz := w0a*v0f.Z + w1a*v1f.Z + w2a*v2f.Z
if pz < fb.ZBuffer[x+y*fb.Width] {
fb.ZBuffer[x+y*fb.Width] = pz
fb.Data.Set(x, y, r, g, b)
}
}
w0 += w0_xi
w1 += w1_xi
w2 += w2_xi
}
w0_y += w0_yi
w1_y += w1_yi
w2_y += w2_yi
}
}
func TriangleTextured(fb *RenderBuffer, texture Framebuffer, intensity float32, v0v Vertex, v1v Vertex, v2v Vertex) {
// min, max
boundsTLf, boundsBRf := ComputeBoundingBoxF(v0v.Pos, v1v.Pos, v2v.Pos)
// The triangle is fully out of bounds; we don't have a proper clipper, so this
// check still needs to be performed
if boundsBRf.Y < 0 || boundsBRf.X < 0 || boundsTLf.X >= float32(fb.Width) || boundsTLf.Y >= float32(fb.Height) { //||
return
}
v0 := v0v.Pos.ToVec2i()
v1 := v1v.Pos.ToVec2i()
v2 := v2v.Pos.ToVec2i()
parea := EdgeFunctioni(v0, v1, v2)
// Don't even bother with drawing backfaces or degenerate triangles;
// don't even give the user the option
if parea <= 0 {
return
}
boundsTL := Vec2i{
X: int(max(boundsTLf.X, 0)),
Y: int(max(boundsTLf.Y, 0)),
}
boundsBR := Vec2i{
X: int(min(boundsBRf.X, float32(fb.Width-1))),
Y: int(min(boundsBRf.Y, float32(fb.Height-1))),
}
// Where to start our scanning
pstart := Vec2i{boundsTL.X, boundsTL.Y}
invarea := 1 / float32(parea)
w0_y := EdgeFunctioni(v1, v2, pstart)
w1_y := EdgeFunctioni(v2, v0, pstart)
w2_y := EdgeFunctioni(v0, v1, pstart)
w0_xi, w0_yi := EdgeIncrementi(v1, v2)
w1_xi, w1_yi := EdgeIncrementi(v2, v0)
w2_xi, w2_yi := EdgeIncrementi(v0, v1)
for y := uint(boundsTL.Y); y <= uint(boundsBR.Y); y++ {
w0 := w0_y
w1 := w1_y
w2 := w2_y
for x := uint(boundsTL.X); x <= uint(boundsBR.X); x++ {
if (w0 | w1 | w2) >= 0 {
//if w0 >= 0 && w1 >= 0 && w2 >= 0 {
w0a := float32(w0) * invarea
w1a := float32(w1) * invarea
w2a := float32(w2) * invarea
pz := w0a*v0v.Pos.Z + w1a*v1v.Pos.Z + w2a*v2v.Pos.Z
if pz < fb.ZBuffer[x+y*fb.Width] {
fb.ZBuffer[x+y*fb.Width] = pz
r, g, b := texture.GetUv(
(w0a*v0v.Tex.X + w1a*v1v.Tex.X + w2a*v2v.Tex.X),
(w0a*v0v.Tex.Y + w1a*v1v.Tex.Y + w2a*v2v.Tex.Y),
)
fb.Data.Set(x, y, byte(float32(r)*intensity), byte(float32(g)*intensity), byte(float32(b)*intensity))
}
}
w0 += w0_xi
w1 += w1_xi
w2 += w2_xi
}
w0_y += w0_yi
w1_y += w1_yi
w2_y += w2_yi
}
}
// Return true if the face should be culled
func BackfaceCull(v1, v2, v3 Vec3f) bool {
// This is what it essentially is
// e1 := v1.Sub(&v2)
// e2 := v1.Sub(&v3)
// // If viewing front face, it should be pointing in the positive z direction
// return e1.CrossProduct(e2).Z <= 0
// But we know we can just use x and y since this is post projection
return (v1.X-v2.X)*(v3.Y-v2.Y)-(v1.Y-v2.Y)*(v3.X-v2.X) >= 0
}
func PerspectiveAndClip(face Facef, matrix3d *Mat44f) []Facef {
outfaces := make([]Facef, 0, 2)
var sc Facef
var w [3]float32
var d [3]float32
outers := make([]int, 0, 3)
for i := range 3 {
sc[i] = face[i]
sc[i].Pos, w[i] = matrix3d.MultiplyPoint3(face[i].Pos)
d[i] = sc[i].Pos.Z + w[i]
if d[i] < 0 {
outers = append(outers, i)
}
}
// Just to test: reject any that have points outside. We don't clip
if len(outers) > 0 {
return outfaces
} else {
for i := range 3 {
//sc[i]
if w[i] != 1 {
sc[i].Pos.X /= w[i]
sc[i].Pos.Y /= w[i]
sc[i].Pos.Z /= w[i]
}
}
// Backface culling: no need to do anything with triangles facing the wrong way
if EdgeFunction(sc[0].Pos, sc[1].Pos, sc[2].Pos) <= 0 {
outfaces = append(outfaces, sc)
}
//outfaces[facei] = sc
//facei += 1
return outfaces
}
// TODO: Now that we're here doing it like this, might as well remove faces
// that are fully outside the other clipping zones. No need to do actual clipping...
// just full rejections. This saves a BIT of processing... though not much
// NOTE: Uh no... this is too much effort. Two points could be outside individual
// planes and thus still intersect the screen.
}