Setting up renderer again

This commit is contained in:
Carlos Sanchez 2024-07-30 19:47:22 -04:00
parent 175155ed5d
commit 61bcbcb823
5 changed files with 621 additions and 1 deletions

142
renderer1/hrend/image.go Normal file
View File

@ -0,0 +1,142 @@
package hrend
import (
"bytes"
"fmt"
"image"
"image/color"
"log"
"math"
"strings"
)
// Convert rgb to uint
func Col2Uint(r, g, b byte) uint {
return (uint(r) << 16) | (uint(g) << 8) | uint(b)
}
func Color2Uint(col color.Color) uint {
r, g, b, _ := col.RGBA()
//log.Print(r, g, b)
return uint(((r & 0xff00) << 8) | (g & 0xff00) | ((b & 0xff00) >> 8))
}
// Convert uint to rgb (in that order)
func Uint2Col(col uint) (byte, byte, byte) {
return byte((col >> 16) & 0xFF), byte((col >> 8) & 0xFF), byte(col & 0xFF)
}
// Color is in ARGB (alpha not used right now)
type Framebuffer struct {
Data []uint
ZBuffer []float32 //uint16 // Apparently 16 bit z-buffers are used
Width uint
Height uint
}
// Create a new framebuffer for the given width and height.
func NewFramebuffer(width uint, height uint) Framebuffer {
return Framebuffer{
Data: make([]uint, width*height),
ZBuffer: make([]float32, width*height),
Width: width,
Height: height,
}
}
func NewTexture(texture image.Image, skip int) Framebuffer {
bounds := texture.Bounds()
width := bounds.Dx() / skip
height := bounds.Dy() / skip
result := Framebuffer{
Data: make([]uint, width*height),
Width: uint(width),
Height: uint(height),
}
for y := bounds.Min.Y; y < bounds.Max.Y; y += skip {
for x := bounds.Min.X; x < bounds.Max.X; x += skip {
col := texture.At(x, y)
result.Set(uint(x/skip), uint(y/skip), Color2Uint(col))
}
}
return result
}
// Fill zbuffer with pixels that are max distance away
func (fb *Framebuffer) ResetZBuffer() {
for i := range fb.ZBuffer {
fb.ZBuffer[i] = 65535 //math.MaxFloat32
}
}
func (fb *Framebuffer) GetUv(u float32, v float32) uint {
x := uint(float32(fb.Width)*u) & (fb.Width - 1)
y := uint(float32(fb.Height)*(1-v)) & (fb.Height - 1)
return fb.Data[x+y*fb.Width]
}
// Sure hope this gets inlined...
func (fb *Framebuffer) Set(x uint, y uint, color uint) {
fb.Data[x+y*fb.Width] = color
}
func (fb *Framebuffer) SetSafe(x uint, y uint, color uint) {
if x >= fb.Width || y >= fb.Height {
return
}
fb.Data[x+y*fb.Width] = color
}
// Given some image data, return a string that is the ppm of it
func (fb *Framebuffer) ExportPPM() string {
log.Printf("ExportPPM called for framebuffer %dx%d", fb.Width, fb.Height)
var result strings.Builder
result.WriteString(fmt.Sprintf("P3\n%d %d\n255\n", fb.Width, fb.Height))
for y := range fb.Height {
for x := range fb.Width {
r, g, b := Uint2Col(fb.Data[x+y*fb.Width])
result.WriteString(fmt.Sprintf("%d %d %d\t", r, g, b))
}
result.WriteRune('\n')
}
return result.String()
}
func (fb *Framebuffer) ExportPPMP6() []byte {
log.Printf("ExportPPM6 called for framebuffer %dx%d", fb.Width, fb.Height)
var result bytes.Buffer
result.WriteString(fmt.Sprintf("P6\n%d %d\n255\n", fb.Width, fb.Height))
for i := range fb.Data {
r, g, b := Uint2Col(fb.Data[i])
result.Write([]byte{r, g, b})
//result.WriteString(fmt.Sprintf("%d %d %d\t", r, g, b))
}
//result.WriteRune('\n')
return result.Bytes()
}
func (fb *Framebuffer) ZBuffer_ExportPPM() string {
var result strings.Builder
mini := float32(math.MaxFloat32)
maxi := float32(-math.MaxFloat32)
for _, f := range fb.ZBuffer {
if f == math.MaxFloat32 {
continue
}
mini = min(f, mini)
maxi = max(f, maxi)
}
result.WriteString(fmt.Sprintf("P2\n%d %d\n255\n", fb.Width, fb.Height))
for y := range fb.Height {
for x := range fb.Width {
if fb.ZBuffer[x+y*fb.Width] == math.MaxFloat32 {
result.WriteString("0 ")
} else {
zp := byte(math.Abs(float64(255 * fb.ZBuffer[x+y*fb.Width] / (maxi - mini))))
result.WriteString(fmt.Sprintf("%d ", zp))
}
}
result.WriteRune('\n')
}
return result.String()
}

159
renderer1/hrend/math.go Normal file
View File

@ -0,0 +1,159 @@
package hrend
// This is the linear algebra junk? Vectors, matrices, etc
import (
"math"
)
type Vec3f struct {
X, Y, Z float32
}
type Vec2i struct {
X, Y int
}
type Vec2f struct {
X, Y float32
}
// A ROW MAJOR matrix
type Mat44f [16]float32
func (m *Mat44f) Set(x int, y int, val float32) {
m[x+y*4] = val
}
func (m *Mat44f) Get(x int, y int) float32 {
return m[x+y*4]
}
func (m *Mat44f) ZeroFill() {
for i := range m {
m[i] = 0
}
}
func (m *Mat44f) SetIdentity() {
m.ZeroFill()
for i := range 4 {
m.Set(i, i, 1)
}
}
// NOTE: we use "Set" instead of "Create" for all these so we reuse the matrix
// instead of creating a new one all the time (garbage collection)
// Compute the projection matrix, filling the given matrix. FOV is in degrees
func (m *Mat44f) SetProjection(fov float32, near float32, far float32) {
// Projection matrix is (ROW MAJOR!)
// S 0 0 0
// 0 S 0 0
// 0 0 -f/(f-n) -1
// 0 0 -fn/(f-n) 0
// where S (scale) is 1 / tan(fov / 2) (assuming fov is radians)
// NOTE: -1 there is actually -1/c, where c is distance from viewer to
// projection plane. We fix it at 1 for now but...
m.ZeroFill()
scale := float32(1 / math.Tan(float64(fov)*0.5*math.Pi/180))
m.Set(0, 0, scale)
m.Set(1, 1, scale)
m.Set(2, 2, -far/(far-near))
m.Set(3, 2, -1)
m.Set(2, 3, -far*near/(far-near))
}
func (m *Mat44f) SetTranslation(x, y, z float32) {
m.SetIdentity()
m.Set(0, 3, x) // Let user decide how to offset x
m.Set(1, 3, y) // Let user decide how to offset x
m.Set(2, 3, z) // Get farther away from the face (user)
}
func (m *Mat44f) SetViewport(tl Vec3f, br Vec3f) { //width, height, depth int) {
m.ZeroFill()
m.Set(0, 0, (br.X-tl.X)/2)
m.Set(1, 1, (tl.Y-br.Y)/2) // Inverted because screen funny
m.Set(2, 2, (br.Z-tl.Z)/2)
m.Set(3, 3, 1)
m.Set(0, 3, (br.X+tl.X)/2)
m.Set(1, 3, (br.Y+tl.Y)/2)
m.Set(2, 3, (br.Z+tl.Z)/2)
}
func (m *Mat44f) SetViewportSimple(width, height, depth int) {
var tl Vec3f // All zero
br := Vec3f{
X: float32(width),
Y: float32(height),
Z: float32(depth),
}
m.SetViewport(tl, br)
}
// Multiply the given point by our vector. Remember this is row-major order
func (m *Mat44f) MultiplyPoint3(p Vec3f) Vec3f {
var out Vec3f
// We hope very much that Go will optimize the function calls for us,
// along with computing the constants.
out.X = p.X*m.Get(0, 0) + p.Y*m.Get(0, 1) + p.Z*m.Get(0, 2) + m.Get(0, 3)
out.Y = p.X*m.Get(1, 0) + p.Y*m.Get(1, 1) + p.Z*m.Get(1, 2) + m.Get(1, 3)
out.Z = p.X*m.Get(2, 0) + p.Y*m.Get(2, 1) + p.Z*m.Get(2, 2) + m.Get(2, 3)
w := p.X*m.Get(3, 0) + p.Y*m.Get(3, 1) + p.Z*m.Get(3, 2) + m.Get(3, 3)
if w != 1 {
out.X /= w
out.Y /= w
out.Z /= w
}
return out
}
// Multiply two 4x4 matrices together (not optimized)
func (m *Mat44f) Multiply(m2 *Mat44f) Mat44f {
var result Mat44f
// This is the x and y of our resulting matrix
for y := 0; y < 4; y++ {
for x := 0; x < 4; x++ {
for i := 0; i < 4; i++ {
result[x+y*4] += m[i+y*4] * m2[x+i*4]
}
}
}
return result
}
func (vi *Vec2i) ToF() Vec2f {
return Vec2f{float32(vi.X), float32(vi.Y)}
}
func (vi *Vec3f) ToVec2i() Vec2i {
return Vec2i{int(vi.X), int(vi.Y)}
}
func (v0 *Vec3f) Sub(v1 Vec3f) Vec3f {
return Vec3f{
X: v0.X - v1.X,
Y: v0.Y - v1.Y,
Z: v0.Z - v1.Z,
}
}
func (v0 *Vec3f) CrossProduct(v1 Vec3f) Vec3f {
return Vec3f{
X: v0.Y*v1.Z - v0.Z*v1.Y,
Y: v0.Z*v1.X - v0.X*v1.Z,
Z: v0.X*v1.Y - v0.Y*v1.X,
}
}
//func (v
func (v *Vec3f) Normalize() Vec3f {
l := float32(math.Sqrt(float64(v.MultSimp(v))))
return Vec3f{
X: v.X / l,
Y: v.Y / l,
Z: v.Z / l,
}
}
func (v0 *Vec3f) MultSimp(v1 *Vec3f) float32 {
return v0.X*v1.X + v0.Y*v1.Y + v0.Z*v1.Z
}

107
renderer1/hrend/obj.go Normal file
View File

@ -0,0 +1,107 @@
package hrend
// This reads obj files?
import (
"bufio"
"fmt"
"io"
"log"
"strings"
)
// A single vertex generally has multiple items associated with it
// when it's part of a face.
type Vertex struct {
Pos Vec3f
Tex Vec3f
}
type Facef [3]Vertex
// struct {
// Vertices [3]Vec3f
// TextureCoords [3]Vec2i
// }
type ObjModel struct {
Vertices []Vec3f
VTexture []Vec3f
Faces []Facef
}
// Parse an obj file at the given reader. Only handles v and f right now
func ParseObj(reader io.Reader) (*ObjModel, error) {
result := ObjModel{
Vertices: make([]Vec3f, 0),
Faces: make([]Facef, 0),
}
breader := bufio.NewReader(reader)
done := false
for !done {
// Scan a line
line, err := breader.ReadString('\n')
if err != nil {
if err == io.EOF {
done = true
} else {
log.Printf("NOT EOF ERR?")
return nil, err
}
}
line = strings.Trim(line, " \t\n\r")
if len(line) == 0 {
continue
}
// Find the first "item", whatever that is. This also gets rid of comments
// since we just don't use lines that start with # (no handler
var t string
_, err = fmt.Sscan(line, &t)
if err != nil {
log.Printf("SSCANF ERR")
return nil, err
}
line = line[len(t):]
if t == "v" {
// Read a vertex, should be just three floats
var v Vec3f
_, err := fmt.Sscan(line, &v.X, &v.Y, &v.Z)
if err != nil {
return nil, err
}
result.Vertices = append(result.Vertices, v)
} else if t == "vt" {
// Read a vertex tex coord, should be just three floats too
var vt Vec3f
_, err := fmt.Sscan(line, &vt.X, &vt.Y, &vt.Z)
if err != nil {
return nil, err
}
result.VTexture = append(result.VTexture, vt)
} else if t == "f" {
// Read a face; in our example, it's always three sets.
// For THIS example, we throw away those other values
var face Facef
var vi [3]int
var vti [3]int
var ti int
_, err := fmt.Sscanf(line, "%d/%d/%d %d/%d/%d %d/%d/%d",
&vi[0], &vti[0], &ti, &vi[1], &vti[1], &ti, &vi[2], &vti[2], &ti)
if err != nil {
return nil, err
}
for i := range 3 {
if vi[i] > len(result.Vertices) || vi[i] < 1 {
return nil, fmt.Errorf("Face vertex index out of bounds: %d", vi[i])
}
face[i].Pos = result.Vertices[vi[i]-1]
if vti[i] > len(result.VTexture) || vti[i] < 1 {
return nil, fmt.Errorf("Face vertex texture index out of bounds: %d", vti[i])
}
face[i].Tex = result.VTexture[vti[i]-1]
}
result.Faces = append(result.Faces, face)
}
}
log.Printf("Obj had %d vertices, %d faces", len(result.Vertices), len(result.Faces))
return &result, nil
}

163
renderer1/hrend/render.go Normal file
View File

@ -0,0 +1,163 @@
package hrend
import (
// "log"
)
// Figure out the minimum bounding box for a triangle defined by
// these vertices. Returns the top left and bottom right points,
// inclusive
func ComputeBoundingBox(v0, v1, v2 Vec2i) (Vec2i, Vec2i) {
return Vec2i{min(v0.X, v1.X, v2.X), min(v0.Y, v1.Y, v2.Y)},
Vec2i{max(v0.X, v1.X, v2.X), max(v0.Y, v1.Y, v2.Y)}
}
// The generic edge function, returning positive if P is on the right side of
// the line drawn between v1 and v2. This is counter clockwise
func EdgeFunction(v1, v2, p Vec2f) float32 {
return (p.X-v1.X)*(v2.Y-v1.Y) - (p.Y-v1.Y)*(v2.X-v1.X)
}
// This computes the x and y per-pixel increment for the line going
// between v1 and v2 (also counter clockwise)
func EdgeIncrement(v1, v2 Vec2f) (float32, float32) {
return (v2.Y - v1.Y), -(v2.X - v1.X)
}
// The generic edge function, returning positive if P is on the right side of
// the line drawn between v1 and v2. This is counter clockwise
func EdgeFunctioni(v1, v2, p Vec2i) int {
return (p.X-v1.X)*(v2.Y-v1.Y) - (p.Y-v1.Y)*(v2.X-v1.X)
}
// This computes the x and y per-pixel increment for the line going
// between v1 and v2 (also counter clockwise)
func EdgeIncrementi(v1, v2 Vec2i) (int, int) {
return (v2.Y - v1.Y), -(v2.X - v1.X)
}
func TriangleFlat(fb *Framebuffer, color uint, v0f Vec3f, v1f Vec3f, v2f Vec3f) {
v0 := v0f.ToVec2i()
v1 := v1f.ToVec2i()
v2 := v2f.ToVec2i()
boundsTL, boundsBR := ComputeBoundingBox(v0, v1, v2)
if boundsTL.Y < 0 {
boundsTL.Y = 0
}
if boundsTL.X < 0 {
boundsTL.X = 0
}
if boundsBR.Y >= int(fb.Height) {
boundsBR.Y = int(fb.Height - 1)
}
if boundsBR.X >= int(fb.Width) {
boundsBR.X = int(fb.Width - 1)
}
// Where to start our scanning
pstart := Vec2i{boundsTL.X, boundsTL.Y}
parea := EdgeFunctioni(v0, v1, v2)
// if parea < 0 {
// v1, v2 = v2, v1
// v1f, v2f = v2f, v1f
// parea = EdgeFunctioni(v0, v1, v2)
// }
invarea := 1 / float32(parea)
w0_y := EdgeFunctioni(v1, v2, pstart)
w1_y := EdgeFunctioni(v2, v0, pstart)
w2_y := EdgeFunctioni(v0, v1, pstart)
w0_xi, w0_yi := EdgeIncrementi(v1, v2)
w1_xi, w1_yi := EdgeIncrementi(v2, v0)
w2_xi, w2_yi := EdgeIncrementi(v0, v1)
for y := uint(boundsTL.Y); y <= uint(boundsBR.Y); y++ {
w0 := w0_y
w1 := w1_y
w2 := w2_y
for x := uint(boundsTL.X); x <= uint(boundsBR.X); x++ {
if (w0 | w1 | w2) >= 0 {
//fb.Data[di] = color
//done = true
w0a := float32(w0) * invarea
w1a := float32(w1) * invarea
w2a := float32(w2) * invarea
pz := w0a*v0f.Z + w1a*v1f.Z + w2a*v2f.Z
if pz < fb.ZBuffer[x+y*fb.Width] {
//log.Print(pz)
fb.ZBuffer[x+y*fb.Width] = pz
fb.Set(x, y, color)
}
// fb.Set(x, y, Col2Uint(byte(255*w0a), byte(255*w1a), byte(255*w2a)))
}
w0 += w0_xi
w1 += w1_xi
w2 += w2_xi
}
w0_y += w0_yi
w1_y += w1_yi
w2_y += w2_yi
}
}
func TriangleTextured(fb *Framebuffer, texture *Framebuffer, intensity float32, v0v Vertex, v1v Vertex, v2v Vertex) {
v0 := v0v.Pos.ToVec2i()
v1 := v1v.Pos.ToVec2i()
v2 := v2v.Pos.ToVec2i()
boundsTL, boundsBR := ComputeBoundingBox(v0, v1, v2)
if boundsBR.Y < 0 || boundsBR.X < 0 || boundsTL.X >= int(fb.Width) || boundsTL.Y >= int(fb.Height) {
return
}
parea := EdgeFunctioni(v0, v1, v2)
if parea == 0 {
return
}
if boundsTL.Y < 0 {
boundsTL.Y = 0
}
if boundsTL.X < 0 {
boundsTL.X = 0
}
if boundsBR.Y >= int(fb.Height) {
boundsBR.Y = int(fb.Height - 1)
}
if boundsBR.X >= int(fb.Width) {
boundsBR.X = int(fb.Width - 1)
}
// Where to start our scanning
pstart := Vec2i{boundsTL.X, boundsTL.Y}
invarea := 1 / float32(parea)
w0_y := EdgeFunctioni(v1, v2, pstart)
w1_y := EdgeFunctioni(v2, v0, pstart)
w2_y := EdgeFunctioni(v0, v1, pstart)
w0_xi, w0_yi := EdgeIncrementi(v1, v2)
w1_xi, w1_yi := EdgeIncrementi(v2, v0)
w2_xi, w2_yi := EdgeIncrementi(v0, v1)
for y := uint(boundsTL.Y); y <= uint(boundsBR.Y); y++ {
w0 := w0_y
w1 := w1_y
w2 := w2_y
for x := uint(boundsTL.X); x <= uint(boundsBR.X); x++ {
if (w0 | w1 | w2) >= 0 {
w0a := float32(w0) * invarea
w1a := float32(w1) * invarea
w2a := float32(w2) * invarea
pz := w0a*v0v.Pos.Z + w1a*v1v.Pos.Z + w2a*v2v.Pos.Z
if pz < fb.ZBuffer[x+y*fb.Width] {
fb.ZBuffer[x+y*fb.Width] = pz
col := texture.GetUv(
(w0a*v0v.Tex.X + w1a*v1v.Tex.X + w2a*v2v.Tex.X),
(w0a*v0v.Tex.Y + w1a*v1v.Tex.Y + w2a*v2v.Tex.Y),
)
r, g, b := Uint2Col(col)
fb.Set(x, y, Col2Uint(byte(float32(r)*intensity), byte(float32(g)*intensity), byte(float32(b)*intensity))) //uint(texture.Bounds().Dx())
}
}
w0 += w0_xi
w1 += w1_xi
w2 += w2_xi
}
w0_y += w0_yi
w1_y += w1_yi
w2_y += w2_yi
}
}

View File

@ -1,15 +1,64 @@
package main package main
import ( import (
"flag"
"log"
"os"
"renderer1/hrend"
"runtime/pprof" // For performance profiling (unnecessary)
rl "github.com/gen2brain/raylib-go/raylib" rl "github.com/gen2brain/raylib-go/raylib"
) )
const (
Width = 640
Height = 480
NearClip = 0.1
FarClip = 100
FOV = 90.0
ZOffset = -1.5
ObjectFile = "head.obj"
TextureFile = "../head.jpg"
)
func must(err error) {
if err != nil {
panic(err)
}
}
// However flag works... idk
var cpuprofile = flag.String("cpuprofile", "", "write cpu profile to file")
// var dozbuf = flag.Bool("zbuffer", false, "Write zbuffer instead of image")
// var p6file = flag.String("p6file", "", "Output binary ppm to given file instead")
// var fov = flag.Float64("fov", 90, "Horizontal FOV in degrees")
// var xofs = flag.Float64("xofs", 0, "Offset image by x")
// var zofs = flag.Float64("zofs", -1.5, "Offset image by z (should be negative)")
// var repeat = flag.Int("repeat", 60, "Amount of times to repeat render")
func main() { func main() {
rl.InitWindow(800, 450, "raylib [core] example - basic window") log.Printf("Program start")
flag.Parse()
if *cpuprofile != "" {
log.Printf("CPU profiling requested, write to %s", *cpuprofile)
f, err := os.Create(*cpuprofile)
must(err)
defer f.Close()
err = pprof.StartCPUProfile(f)
must(err)
defer pprof.StopCPUProfile()
}
rl.InitWindow(Width, Height, "Simple renderer with raylib")
defer rl.CloseWindow() defer rl.CloseWindow()
rl.SetTargetFPS(60) rl.SetTargetFPS(60)
var thing hrend.Vec2i
log.Print(thing)
for !rl.WindowShouldClose() { for !rl.WindowShouldClose() {
rl.BeginDrawing() rl.BeginDrawing()