Setting up new renderer for testing

This commit is contained in:
Carlos Sanchez 2024-08-02 15:35:30 -04:00
parent 78565064ef
commit 4f4885aebb
12 changed files with 1202 additions and 0 deletions

1
renderer2/.gitignore vendored Normal file
View File

@ -0,0 +1 @@
renderer2

11
renderer2/go.mod Normal file
View File

@ -0,0 +1,11 @@
module renderer1
go 1.22.5
require github.com/gen2brain/raylib-go/raylib v0.0.0-20240628125141-62016ee92fc0
require (
github.com/ebitengine/purego v0.7.1 // indirect
golang.org/x/exp v0.0.0-20240506185415-9bf2ced13842 // indirect
golang.org/x/sys v0.20.0 // indirect
)

8
renderer2/go.sum Normal file
View File

@ -0,0 +1,8 @@
github.com/ebitengine/purego v0.7.1 h1:6/55d26lG3o9VCZX8lping+bZcmShseiqlh2bnUDiPA=
github.com/ebitengine/purego v0.7.1/go.mod h1:ah1In8AOtksoNK6yk5z1HTJeUkC1Ez4Wk2idgGslMwQ=
github.com/gen2brain/raylib-go/raylib v0.0.0-20240628125141-62016ee92fc0 h1:mhWZabwn9WvzqMBgiuW8ewuQ4Zg+PfW+XbNnTtIX1FY=
github.com/gen2brain/raylib-go/raylib v0.0.0-20240628125141-62016ee92fc0/go.mod h1:BaY76bZk7nw1/kVOSQObPY1v1iwVE1KHAGMfvI6oK1Q=
golang.org/x/exp v0.0.0-20240506185415-9bf2ced13842 h1:vr/HnozRka3pE4EsMEg1lgkXJkTFJCVUX+S/ZT6wYzM=
golang.org/x/exp v0.0.0-20240506185415-9bf2ced13842/go.mod h1:XtvwrStGgqGPLc4cjQfWqZHG1YFdYs6swckp8vpsjnc=
golang.org/x/sys v0.20.0 h1:Od9JTbYCk261bKm4M/mw7AklTlFYIa0bIp9BgSm1S8Y=
golang.org/x/sys v0.20.0/go.mod h1:/VUhepiaJMQUp4+oa/7Zr1D23ma6VTLIYjOOTFZPUcA=

View File

@ -0,0 +1,27 @@
package hrend
import (
"time"
)
// Sum up and average frame times at desired intervals. Average and sum
// should be seconds
type FrameTimer struct {
Sum time.Duration
TotalTime time.Duration
Count int
TotalCount int
LastAverage time.Duration
}
func (ft *FrameTimer) Add(t time.Duration, avgcount int) {
ft.Sum += t
ft.TotalTime += t
ft.Count += 1
ft.TotalCount += 1
if ft.Count%avgcount == 0 {
ft.LastAverage = ft.Sum / time.Duration(ft.Count)
ft.Sum = 0
ft.Count = 0
}
}

195
renderer2/hrend/image.go Normal file
View File

@ -0,0 +1,195 @@
package hrend
import (
"bytes"
"fmt"
"image"
"image/color"
"log"
"math"
"strings"
)
// Convert rgb to uint
func Col2Uint(r, g, b byte) uint {
return (uint(r) << 16) | (uint(g) << 8) | uint(b)
}
func Color2Uint(col color.Color) uint {
r, g, b, _ := col.RGBA()
//log.Print(r, g, b)
return uint(((r & 0xff00) << 8) | (g & 0xff00) | ((b & 0xff00) >> 8))
}
// Convert uint to rgb (in that order)
func Uint2Col(col uint) (byte, byte, byte) {
return byte((col >> 16) & 0xFF), byte((col >> 8) & 0xFF), byte(col & 0xFF)
}
// A simple buffer where you can set pixels
type Framebuffer interface {
Set(x uint, y uint, r byte, g byte, b byte)
Get(x uint, y uint) (byte, byte, byte)
GetUv(u float32, v float32) (byte, byte, byte)
Dims() (uint, uint)
}
// Turn framebuffer into image, useful for processing into individual frames
func ToImage(fb Framebuffer) *image.RGBA {
width, height := fb.Dims()
result := image.NewRGBA(image.Rect(0, 0, int(width), int(height)))
for y := range height {
for x := range width {
c := color.RGBA{A: 255}
c.R, c.G, c.G = fb.Get(x, y)
result.Set(int(x), int(y), c)
}
}
return result
}
// Color is in RGB (alpha not used right now)
type SimpleFramebuffer struct {
Data []byte
Width uint
Height uint
}
func (fb *SimpleFramebuffer) Dims() (uint, uint) {
return fb.Width, fb.Height
}
// Sure hope this gets inlined...
func (fb *SimpleFramebuffer) Set(x uint, y uint, r byte, g byte, b byte) {
if x >= fb.Width || y >= fb.Height {
return
}
fb.Data[(x+y*fb.Width)*3] = r
fb.Data[(x+y*fb.Width)*3+1] = g
fb.Data[(x+y*fb.Width)*3+2] = b
}
func (fb *SimpleFramebuffer) Get(x uint, y uint) (byte, byte, byte) {
if x >= fb.Width || y >= fb.Height {
return 0, 0, 0
}
return fb.Data[(x+y*fb.Width)*3],
fb.Data[(x+y*fb.Width)*3+1],
fb.Data[(x+y*fb.Width)*3+2]
}
func (fb *SimpleFramebuffer) GetUv(u float32, v float32) (byte, byte, byte) {
x := uint(float32(fb.Width)*u) & (fb.Width - 1)
y := uint(float32(fb.Height)*(1-v)) & (fb.Height - 1)
return fb.Data[(x+y*fb.Width)*3],
fb.Data[(x+y*fb.Width)*3+1],
fb.Data[(x+y*fb.Width)*3+2]
}
func NewSimpleFramebuffer(width uint, height uint) *SimpleFramebuffer {
return &SimpleFramebuffer{
Data: make([]byte, width*height*3),
Width: width,
Height: height,
}
}
type RenderBuffer struct {
Data Framebuffer
ZBuffer []float32 //uint16 // Apparently 16 bit z-buffers are used
Width uint
Height uint
}
// Create a new framebuffer for the given width and height.
func NewRenderbuffer(d Framebuffer, width uint, height uint) RenderBuffer {
return RenderBuffer{
Data: d,
ZBuffer: make([]float32, width*height),
Width: width,
Height: height,
}
}
func NewTexture(texture image.Image, skip int) *SimpleFramebuffer {
bounds := texture.Bounds()
width := bounds.Dx() / skip
height := bounds.Dy() / skip
result := NewSimpleFramebuffer(uint(width), uint(height))
wlog := math.Log2(float64(width))
hlog := math.Log2(float64(height))
if wlog != math.Floor(wlog) || hlog != math.Floor(hlog) {
panic("Texture must be power of two")
}
for y := bounds.Min.Y; y < bounds.Max.Y; y += skip {
for x := bounds.Min.X; x < bounds.Max.X; x += skip {
col := texture.At(x, y)
r, g, b, _ := col.RGBA()
result.Set(uint(x/skip), uint(y/skip), byte(r>>8), byte(g>>8), byte(b>>8))
}
}
return result
}
// Fill zbuffer with pixels that are max distance away
func (fb *RenderBuffer) ResetZBuffer() {
for i := range fb.ZBuffer {
fb.ZBuffer[i] = 65535 //math.MaxFloat32
}
}
// Given some image data, return a string that is the ppm of it
func (fb *RenderBuffer) ExportPPM() string {
log.Printf("ExportPPM called for framebuffer %dx%d", fb.Width, fb.Height)
var result strings.Builder
result.WriteString(fmt.Sprintf("P3\n%d %d\n255\n", fb.Width, fb.Height))
for y := range fb.Height {
for x := range fb.Width {
r, g, b := fb.Data.Get(x, y)
result.WriteString(fmt.Sprintf("%d %d %d\t", r, g, b))
}
result.WriteRune('\n')
}
return result.String()
}
func (fb *RenderBuffer) ExportPPMP6() []byte {
log.Printf("ExportPPM6 called for framebuffer %dx%d", fb.Width, fb.Height)
var result bytes.Buffer
result.WriteString(fmt.Sprintf("P6\n%d %d\n255\n", fb.Width, fb.Height))
for y := range fb.Height {
for x := range fb.Width {
r, g, b := fb.Data.Get(x, y)
result.Write([]byte{r, g, b})
}
//result.WriteString(fmt.Sprintf("%d %d %d\t", r, g, b))
}
//result.WriteRune('\n')
return result.Bytes()
}
func (fb *RenderBuffer) ZBuffer_ExportPPM() string {
var result strings.Builder
mini := float32(math.MaxFloat32)
maxi := float32(-math.MaxFloat32)
for _, f := range fb.ZBuffer {
if f == math.MaxFloat32 {
continue
}
mini = min(f, mini)
maxi = max(f, maxi)
}
result.WriteString(fmt.Sprintf("P2\n%d %d\n255\n", fb.Width, fb.Height))
for y := range fb.Height {
for x := range fb.Width {
if fb.ZBuffer[x+y*fb.Width] == math.MaxFloat32 {
result.WriteString("0 ")
} else {
zp := byte(math.Abs(float64(255 * fb.ZBuffer[x+y*fb.Width] / (maxi - mini))))
result.WriteString(fmt.Sprintf("%d ", zp))
}
}
result.WriteRune('\n')
}
return result.String()
}

View File

@ -0,0 +1,49 @@
/*package hrend
import (
"image"
)
// Color is in RGB (alpha not used right now)
type ImageFramebuffer struct {
Data image.Image
Width uint
Height uint
}
// Sure hope this gets inlined...
func (fb *ImageFramebuffer) Set(x uint, y uint, r byte, g byte, b byte) {
if x >= fb.Width || y >= fb.Height {
return
}
image.New
fb.Data.
fb.Data[(x+y*fb.Width)*3] = r
fb.Data[(x+y*fb.Width)*3+1] = g
fb.Data[(x+y*fb.Width)*3+2] = b
}
func (fb *SimpleFramebuffer) Get(x uint, y uint) (byte, byte, byte) {
if x >= fb.Width || y >= fb.Height {
return 0, 0, 0
}
return fb.Data[(x+y*fb.Width)*3],
fb.Data[(x+y*fb.Width)*3+1],
fb.Data[(x+y*fb.Width)*3+2]
}
func (fb *SimpleFramebuffer) GetUv(u float32, v float32) (byte, byte, byte) {
x := uint(float32(fb.Width)*u) & (fb.Width - 1)
y := uint(float32(fb.Height)*(1-v)) & (fb.Height - 1)
return fb.Data[(x+y*fb.Width)*3],
fb.Data[(x+y*fb.Width)*3+1],
fb.Data[(x+y*fb.Width)*3+2]
}
func NewSimpleFramebuffer(width uint, height uint) *SimpleFramebuffer {
return &SimpleFramebuffer{
Data: make([]byte, width*height*3),
Width: width,
Height: height,
}
}*/

324
renderer2/hrend/math.go Normal file
View File

@ -0,0 +1,324 @@
package hrend
// This is the linear algebra junk? Vectors, matrices, etc
import (
//"log"
"math"
)
type Vec3f struct {
X, Y, Z float32
}
type Vec2i struct {
X, Y int
}
type Vec2f struct {
X, Y float32
}
// A ROW MAJOR matrix
type Mat44f [16]float32
func (m *Mat44f) Set(x int, y int, val float32) {
m[x+y*4] = val
}
func (m *Mat44f) Get(x int, y int) float32 {
return m[x+y*4]
}
func (m *Mat44f) ZeroFill() {
for i := range m {
m[i] = 0
}
}
// Multiply the entire matrix by the given value
func (m *Mat44f) MultiplySelf(f float32) {
for i := range m {
m[i] *= f
}
}
// Copied from https://github.com/go-gl/mathgl/blob/master/mgl32/matrix.go
func (m *Mat44f) Determinant() float32 {
return m[0]*m[5]*m[10]*m[15] - m[0]*m[5]*m[11]*m[14] - m[0]*m[6]*m[9]*m[15] + m[0]*m[6]*m[11]*m[13] + m[0]*m[7]*m[9]*m[14] - m[0]*m[7]*m[10]*m[13] - m[1]*m[4]*m[10]*m[15] + m[1]*m[4]*m[11]*m[14] + m[1]*m[6]*m[8]*m[15] - m[1]*m[6]*m[11]*m[12] - m[1]*m[7]*m[8]*m[14] + m[1]*m[7]*m[10]*m[12] + m[2]*m[4]*m[9]*m[15] - m[2]*m[4]*m[11]*m[13] - m[2]*m[5]*m[8]*m[15] + m[2]*m[5]*m[11]*m[12] + m[2]*m[7]*m[8]*m[13] - m[2]*m[7]*m[9]*m[12] - m[3]*m[4]*m[9]*m[14] + m[3]*m[4]*m[10]*m[13] + m[3]*m[5]*m[8]*m[14] - m[3]*m[5]*m[10]*m[12] - m[3]*m[6]*m[8]*m[13] + m[3]*m[6]*m[9]*m[12]
}
// Copied from https://github.com/go-gl/mathgl/blob/master/mgl32/matrix.go
func (m *Mat44f) Inverse() *Mat44f {
det := m.Determinant()
if det == float32(0.0) {
return &Mat44f{}
}
// How the hell am I supposed to know if this is correct? Oh well...
result := Mat44f{
-m[7]*m[10]*m[13] + m[6]*m[11]*m[13] + m[7]*m[9]*m[14] - m[5]*m[11]*m[14] - m[6]*m[9]*m[15] + m[5]*m[10]*m[15],
m[3]*m[10]*m[13] - m[2]*m[11]*m[13] - m[3]*m[9]*m[14] + m[1]*m[11]*m[14] + m[2]*m[9]*m[15] - m[1]*m[10]*m[15],
-m[3]*m[6]*m[13] + m[2]*m[7]*m[13] + m[3]*m[5]*m[14] - m[1]*m[7]*m[14] - m[2]*m[5]*m[15] + m[1]*m[6]*m[15],
m[3]*m[6]*m[9] - m[2]*m[7]*m[9] - m[3]*m[5]*m[10] + m[1]*m[7]*m[10] + m[2]*m[5]*m[11] - m[1]*m[6]*m[11],
m[7]*m[10]*m[12] - m[6]*m[11]*m[12] - m[7]*m[8]*m[14] + m[4]*m[11]*m[14] + m[6]*m[8]*m[15] - m[4]*m[10]*m[15],
-m[3]*m[10]*m[12] + m[2]*m[11]*m[12] + m[3]*m[8]*m[14] - m[0]*m[11]*m[14] - m[2]*m[8]*m[15] + m[0]*m[10]*m[15],
m[3]*m[6]*m[12] - m[2]*m[7]*m[12] - m[3]*m[4]*m[14] + m[0]*m[7]*m[14] + m[2]*m[4]*m[15] - m[0]*m[6]*m[15],
-m[3]*m[6]*m[8] + m[2]*m[7]*m[8] + m[3]*m[4]*m[10] - m[0]*m[7]*m[10] - m[2]*m[4]*m[11] + m[0]*m[6]*m[11],
-m[7]*m[9]*m[12] + m[5]*m[11]*m[12] + m[7]*m[8]*m[13] - m[4]*m[11]*m[13] - m[5]*m[8]*m[15] + m[4]*m[9]*m[15],
m[3]*m[9]*m[12] - m[1]*m[11]*m[12] - m[3]*m[8]*m[13] + m[0]*m[11]*m[13] + m[1]*m[8]*m[15] - m[0]*m[9]*m[15],
-m[3]*m[5]*m[12] + m[1]*m[7]*m[12] + m[3]*m[4]*m[13] - m[0]*m[7]*m[13] - m[1]*m[4]*m[15] + m[0]*m[5]*m[15],
m[3]*m[5]*m[8] - m[1]*m[7]*m[8] - m[3]*m[4]*m[9] + m[0]*m[7]*m[9] + m[1]*m[4]*m[11] - m[0]*m[5]*m[11],
m[6]*m[9]*m[12] - m[5]*m[10]*m[12] - m[6]*m[8]*m[13] + m[4]*m[10]*m[13] + m[5]*m[8]*m[14] - m[4]*m[9]*m[14],
-m[2]*m[9]*m[12] + m[1]*m[10]*m[12] + m[2]*m[8]*m[13] - m[0]*m[10]*m[13] - m[1]*m[8]*m[14] + m[0]*m[9]*m[14],
m[2]*m[5]*m[12] - m[1]*m[6]*m[12] - m[2]*m[4]*m[13] + m[0]*m[6]*m[13] + m[1]*m[4]*m[14] - m[0]*m[5]*m[14],
-m[2]*m[5]*m[8] + m[1]*m[6]*m[8] + m[2]*m[4]*m[9] - m[0]*m[6]*m[9] - m[1]*m[4]*m[10] + m[0]*m[5]*m[10],
}
result.MultiplySelf(1 / det)
//log.Print(m)
//log.Print(result)
return &result
}
func (m *Mat44f) SetIdentity() {
m.ZeroFill()
for i := range 4 {
m.Set(i, i, 1)
}
}
// NOTE: we use "Set" instead of "Create" for all these so we reuse the matrix
// instead of creating a new one all the time (garbage collection)
// Compute the projection matrix, filling the given matrix. FOV is in degrees
func (m *Mat44f) SetProjection(fov float32, aspect float32, near float32, far float32) {
// Projection matrix is (ROW MAJOR!)
// S 0 0 0
// 0 S 0 0
// 0 0 -f/(f-n) -1
// 0 0 -fn/(f-n) 0
// where S (scale) is 1 / tan(fov / 2) (assuming fov is radians)
// // NOTE: -1 there is actually -1/c, where c is distance from viewer to
// // projection plane. We fix it at 1 for now but...
// m.ZeroFill()
// scale := float32(1 / math.Tan(float64(fov)*0.5*math.Pi/180))
// m.Set(0, 0, scale)
// m.Set(1, 1, scale)
// m.Set(2, 2, -far/(far-near))
// m.Set(3, 2, -1)
// m.Set(2, 3, -far*near/(far-near))
// OK apparently I suck, let's use somebody else's projection matrix:
m.ZeroFill()
DEG2RAD := math.Acos(-1.0) / 180.0
tangent := math.Tan(float64(fov/2.0) * DEG2RAD) // tangent of half fovY
top := near * float32(tangent) // half height of near plane
right := top * aspect // half width of near plane
// Column major maybe???
// n/r 0 0 0
// 0 n/t 0 0
// 0 0 -(f+n)/(f-n) -1
// 0 0 -(2fn)/(f-n) 0
m.Set(0, 0, near/right)
m.Set(1, 1, near/top)
m.Set(2, 2, -(far+near)/(far-near))
m.Set(3, 2, -1)
m.Set(2, 3, -(2*far*near)/(far-near))
}
func (m *Mat44f) SetTranslation(x, y, z float32) {
m.SetIdentity()
m.Set(0, 3, x) // Let user decide how to offset x
m.Set(1, 3, y) // Let user decide how to offset x
m.Set(2, 3, z) // Get farther away from the face (user)
}
func (m *Mat44f) SetRotationX(radang float32) {
m.SetIdentity()
m[5] = float32(math.Cos(float64(radang)))
m[10] = m[5]
m[6] = float32(math.Sin(float64(radang)))
m[9] = -m[6]
}
func (m *Mat44f) SetRotationY(radang float32) {
m.SetIdentity()
m[0] = float32(math.Cos(float64(radang)))
m[10] = m[0]
m[8] = float32(math.Sin(float64(radang)))
m[2] = -m[8]
}
func (m *Mat44f) SetRotationZ(radang float32) {
m.SetIdentity()
m[0] = float32(math.Cos(float64(radang)))
m[5] = m[0]
m[4] = float32(math.Sin(float64(radang)))
m[2] = -m[4]
}
// Camera is easier to deal with using yaw and pitch, since we're not supporting roll
func (m *Mat44f) SetCamera(loc *Vec3f, yaw float32, pitch float32, up *Vec3f) Vec3f {
// Use sphere equation to compute lookat vector through the two
// player-controled angles (pitch and yaw)
lookvec := Vec3f{
Z: float32(-math.Sin(float64(pitch)) * math.Cos(float64(yaw))),
X: float32(math.Sin(float64(pitch)) * math.Sin(float64(yaw))),
Y: float32(math.Cos(float64(pitch))),
}
m.SetLookAt(loc, loc.Add(&lookvec), up)
//m.Set(0, 0, m.Get(0, 0)*scale)
//m.Set(1, 1, m.Get(1, 1)*scale)
//m.Set(2, 2, m.Get(2, 2)*scale)
return lookvec
}
// Note: use {0,1,0} for up for normal use
func (m *Mat44f) SetLookAt(from *Vec3f, to *Vec3f, up *Vec3f) {
forward := from.Sub(to).Normalize()
// IDK if you have to normalize but whatever
right := up.CrossProduct(forward).Normalize()
realup := forward.CrossProduct(right)
m.SetIdentity()
m.Set(0, 0, right.X)
m.Set(1, 0, right.Y)
m.Set(2, 0, right.Z)
m.Set(0, 1, realup.X)
m.Set(1, 1, realup.Y)
m.Set(2, 1, realup.Z)
m.Set(0, 2, forward.X)
m.Set(1, 2, forward.Y)
m.Set(2, 2, forward.Z)
m.Set(0, 3, from.X)
m.Set(1, 3, from.Y)
m.Set(2, 3, from.Z)
}
func (m *Mat44f) SetViewport(tl Vec3f, br Vec3f) { //width, height, depth int) {
m.ZeroFill()
m.Set(0, 0, (br.X-tl.X)/2)
m.Set(1, 1, (tl.Y-br.Y)/2) // Inverted because screen funny
m.Set(2, 2, (br.Z-tl.Z)/2)
m.Set(3, 3, 1)
m.Set(0, 3, (br.X+tl.X)/2)
m.Set(1, 3, (br.Y+tl.Y)/2)
m.Set(2, 3, (br.Z+tl.Z)/2)
}
func (m *Mat44f) SetViewportSimple(width, height, depth int) {
var tl Vec3f // All zero
br := Vec3f{
X: float32(width),
Y: float32(height),
Z: float32(depth),
}
m.SetViewport(tl, br)
}
// Multiply the given point by our vector. Remember this is row-major order
func (m *Mat44f) MultiplyPoint3(p Vec3f) Vec3f {
var out Vec3f
// We hope very much that Go will optimize the function calls for us,
// along with computing the constants.
out.X = p.X*m.Get(0, 0) + p.Y*m.Get(0, 1) + p.Z*m.Get(0, 2) + m.Get(0, 3)
out.Y = p.X*m.Get(1, 0) + p.Y*m.Get(1, 1) + p.Z*m.Get(1, 2) + m.Get(1, 3)
out.Z = p.X*m.Get(2, 0) + p.Y*m.Get(2, 1) + p.Z*m.Get(2, 2) + m.Get(2, 3)
w := p.X*m.Get(3, 0) + p.Y*m.Get(3, 1) + p.Z*m.Get(3, 2) + m.Get(3, 3)
if w != 1 {
out.X /= w
out.Y /= w
out.Z /= w
}
return out
}
// Multiply two 4x4 matrices together (not optimized). May
// mess with garbage collector?? IDK
func (m *Mat44f) Multiply(m2 *Mat44f) *Mat44f {
var result Mat44f
// This is the x and y of our resulting matrix
for y := 0; y < 4; y++ {
for x := 0; x < 4; x++ {
for i := 0; i < 4; i++ {
result[x+y*4] += m[i+y*4] * m2[x+i*4]
}
}
}
return &result
}
// Multiply two matrices, storing the result in the first one
// func (m *Mat44f) MultiplyInto(m2 *Mat44f) {
// var orig Mat44f
// for i := 0; i < 16; i++ {
// orig[i] = m[i]
// }
// // This is the x and y of our resulting matrix
// for y := 0; y < 4; y++ {
// for x := 0; x < 4; x++ {
// m[x+y*4] = 0
// for i := 0; i < 4; i++ {
// m[x+y*4] += orig[i+y*4] * m2[x+i*4]
// }
// }
// }
// return &result
// }
func (vi *Vec2i) ToF() Vec2f {
return Vec2f{float32(vi.X), float32(vi.Y)}
}
func (vi *Vec3f) ToVec2i() Vec2i {
return Vec2i{int(vi.X), int(vi.Y)}
}
func (v0 *Vec3f) Add(v1 *Vec3f) *Vec3f {
return &Vec3f{
X: v0.X + v1.X,
Y: v0.Y + v1.Y,
Z: v0.Z + v1.Z,
}
}
func (v0 *Vec3f) Sub(v1 *Vec3f) *Vec3f {
return &Vec3f{
X: v0.X - v1.X,
Y: v0.Y - v1.Y,
Z: v0.Z - v1.Z,
}
}
func (v0 *Vec3f) CrossProduct(v1 *Vec3f) *Vec3f {
return &Vec3f{
X: v0.Y*v1.Z - v0.Z*v1.Y,
Y: v0.Z*v1.X - v0.X*v1.Z,
Z: v0.X*v1.Y - v0.Y*v1.X,
}
}
//func (v
func (v *Vec3f) Normalize() *Vec3f {
l := float32(math.Sqrt(float64(v.MultSimp(v))))
return &Vec3f{
X: v.X / l,
Y: v.Y / l,
Z: v.Z / l,
}
}
func (v0 *Vec3f) MultSimp(v1 *Vec3f) float32 {
return v0.X*v1.X + v0.Y*v1.Y + v0.Z*v1.Z
}
func Clamp(v, minv, maxv float32) float32 {
if v < minv {
return minv
} else if v > maxv {
return maxv
} else {
return v
}
}

107
renderer2/hrend/obj.go Normal file
View File

@ -0,0 +1,107 @@
package hrend
// This reads obj files?
import (
"bufio"
"fmt"
"io"
"log"
"strings"
)
// A single vertex generally has multiple items associated with it
// when it's part of a face.
type Vertex struct {
Pos Vec3f
Tex Vec3f
}
type Facef [3]Vertex
// struct {
// Vertices [3]Vec3f
// TextureCoords [3]Vec2i
// }
type ObjModel struct {
Vertices []Vec3f
VTexture []Vec3f
Faces []Facef
}
// Parse an obj file at the given reader. Only handles v and f right now
func ParseObj(reader io.Reader) (*ObjModel, error) {
result := ObjModel{
Vertices: make([]Vec3f, 0),
Faces: make([]Facef, 0),
}
breader := bufio.NewReader(reader)
done := false
for !done {
// Scan a line
line, err := breader.ReadString('\n')
if err != nil {
if err == io.EOF {
done = true
} else {
log.Printf("NOT EOF ERR?")
return nil, err
}
}
line = strings.Trim(line, " \t\n\r")
if len(line) == 0 {
continue
}
// Find the first "item", whatever that is. This also gets rid of comments
// since we just don't use lines that start with # (no handler
var t string
_, err = fmt.Sscan(line, &t)
if err != nil {
log.Printf("SSCANF ERR")
return nil, err
}
line = line[len(t):]
if t == "v" {
// Read a vertex, should be just three floats
var v Vec3f
_, err := fmt.Sscan(line, &v.X, &v.Y, &v.Z)
if err != nil {
return nil, err
}
result.Vertices = append(result.Vertices, v)
} else if t == "vt" {
// Read a vertex tex coord, should be just three floats too
var vt Vec3f
_, err := fmt.Sscan(line, &vt.X, &vt.Y, &vt.Z)
if err != nil {
return nil, err
}
result.VTexture = append(result.VTexture, vt)
} else if t == "f" {
// Read a face; in our example, it's always three sets.
// For THIS example, we throw away those other values
var face Facef
var vi [3]int
var vti [3]int
var ti int
_, err := fmt.Sscanf(line, "%d/%d/%d %d/%d/%d %d/%d/%d",
&vi[0], &vti[0], &ti, &vi[1], &vti[1], &ti, &vi[2], &vti[2], &ti)
if err != nil {
return nil, err
}
for i := range 3 {
if vi[i] > len(result.Vertices) || vi[i] < 1 {
return nil, fmt.Errorf("Face vertex index out of bounds: %d", vi[i])
}
face[i].Pos = result.Vertices[vi[i]-1]
if vti[i] > len(result.VTexture) || vti[i] < 1 {
return nil, fmt.Errorf("Face vertex texture index out of bounds: %d", vti[i])
}
face[i].Tex = result.VTexture[vti[i]-1]
}
result.Faces = append(result.Faces, face)
}
}
log.Printf("Obj had %d vertices, %d faces", len(result.Vertices), len(result.Faces))
return &result, nil
}

177
renderer2/hrend/render.go Normal file
View File

@ -0,0 +1,177 @@
package hrend
import (
// "log"
)
// Figure out the minimum bounding box for a triangle defined by
// these vertices. Returns the top left and bottom right points,
// inclusive
func ComputeBoundingBox(v0, v1, v2 Vec2i) (Vec2i, Vec2i) {
return Vec2i{min(v0.X, v1.X, v2.X), min(v0.Y, v1.Y, v2.Y)},
Vec2i{max(v0.X, v1.X, v2.X), max(v0.Y, v1.Y, v2.Y)}
}
// The generic edge function, returning positive if P is on the right side of
// the line drawn between v1 and v2. This is counter clockwise
func EdgeFunction(v1, v2, p Vec2f) float32 {
return (p.X-v1.X)*(v2.Y-v1.Y) - (p.Y-v1.Y)*(v2.X-v1.X)
}
// This computes the x and y per-pixel increment for the line going
// between v1 and v2 (also counter clockwise)
func EdgeIncrement(v1, v2 Vec2f) (float32, float32) {
return (v2.Y - v1.Y), -(v2.X - v1.X)
}
// The generic edge function, returning positive if P is on the right side of
// the line drawn between v1 and v2. This is counter clockwise
func EdgeFunctioni(v1, v2, p Vec2i) int {
return (p.X-v1.X)*(v2.Y-v1.Y) - (p.Y-v1.Y)*(v2.X-v1.X)
}
// This computes the x and y per-pixel increment for the line going
// between v1 and v2 (also counter clockwise)
func EdgeIncrementi(v1, v2 Vec2i) (int, int) {
return (v2.Y - v1.Y), -(v2.X - v1.X)
}
func ZClip(v0f Vec3f, v1f Vec3f, v2f Vec3f) bool {
maxz := max(v0f.Z, v1f.Z, v2f.Z)
return maxz < 0 || maxz > 1
}
func TriangleFlat(fb *RenderBuffer, color uint, v0f Vec3f, v1f Vec3f, v2f Vec3f) {
if ZClip(v0f, v1f, v2f) {
return
}
v0 := v0f.ToVec2i()
v1 := v1f.ToVec2i()
v2 := v2f.ToVec2i()
r, g, b := Uint2Col(color)
boundsTL, boundsBR := ComputeBoundingBox(v0, v1, v2)
if boundsBR.Y < 0 || boundsBR.X < 0 || boundsTL.X >= int(fb.Width) || boundsTL.Y >= int(fb.Height) {
return
}
if boundsTL.Y < 0 {
boundsTL.Y = 0
}
if boundsTL.X < 0 {
boundsTL.X = 0
}
if boundsBR.Y >= int(fb.Height) {
boundsBR.Y = int(fb.Height - 1)
}
if boundsBR.X >= int(fb.Width) {
boundsBR.X = int(fb.Width - 1)
}
// Where to start our scanning
pstart := Vec2i{boundsTL.X, boundsTL.Y}
parea := EdgeFunctioni(v0, v1, v2)
// if parea < 0 {
// v1, v2 = v2, v1
// v1f, v2f = v2f, v1f
// parea = EdgeFunctioni(v0, v1, v2)
// }
invarea := 1 / float32(parea)
w0_y := EdgeFunctioni(v1, v2, pstart)
w1_y := EdgeFunctioni(v2, v0, pstart)
w2_y := EdgeFunctioni(v0, v1, pstart)
w0_xi, w0_yi := EdgeIncrementi(v1, v2)
w1_xi, w1_yi := EdgeIncrementi(v2, v0)
w2_xi, w2_yi := EdgeIncrementi(v0, v1)
for y := uint(boundsTL.Y); y <= uint(boundsBR.Y); y++ {
w0 := w0_y
w1 := w1_y
w2 := w2_y
for x := uint(boundsTL.X); x <= uint(boundsBR.X); x++ {
if (w0 | w1 | w2) >= 0 {
//fb.Data[di] = color
//done = true
w0a := float32(w0) * invarea
w1a := float32(w1) * invarea
w2a := float32(w2) * invarea
pz := w0a*v0f.Z + w1a*v1f.Z + w2a*v2f.Z
if pz < fb.ZBuffer[x+y*fb.Width] {
//log.Print(pz)
fb.ZBuffer[x+y*fb.Width] = pz
fb.Data.Set(x, y, r, g, b)
}
// fb.Set(x, y, Col2Uint(byte(255*w0a), byte(255*w1a), byte(255*w2a)))
}
w0 += w0_xi
w1 += w1_xi
w2 += w2_xi
}
w0_y += w0_yi
w1_y += w1_yi
w2_y += w2_yi
}
}
func TriangleTextured(fb *RenderBuffer, texture Framebuffer, intensity float32, v0v Vertex, v1v Vertex, v2v Vertex) {
if ZClip(v0v.Pos, v1v.Pos, v2v.Pos) {
return
}
v0 := v0v.Pos.ToVec2i()
v1 := v1v.Pos.ToVec2i()
v2 := v2v.Pos.ToVec2i()
boundsTL, boundsBR := ComputeBoundingBox(v0, v1, v2)
if boundsBR.Y < 0 || boundsBR.X < 0 || boundsTL.X >= int(fb.Width) || boundsTL.Y >= int(fb.Height) {
return
}
parea := EdgeFunctioni(v0, v1, v2)
if parea == 0 {
return
}
if boundsTL.Y < 0 {
boundsTL.Y = 0
}
if boundsTL.X < 0 {
boundsTL.X = 0
}
if boundsBR.Y >= int(fb.Height) {
boundsBR.Y = int(fb.Height - 1)
}
if boundsBR.X >= int(fb.Width) {
boundsBR.X = int(fb.Width - 1)
}
// Where to start our scanning
pstart := Vec2i{boundsTL.X, boundsTL.Y}
invarea := 1 / float32(parea)
w0_y := EdgeFunctioni(v1, v2, pstart)
w1_y := EdgeFunctioni(v2, v0, pstart)
w2_y := EdgeFunctioni(v0, v1, pstart)
w0_xi, w0_yi := EdgeIncrementi(v1, v2)
w1_xi, w1_yi := EdgeIncrementi(v2, v0)
w2_xi, w2_yi := EdgeIncrementi(v0, v1)
for y := uint(boundsTL.Y); y <= uint(boundsBR.Y); y++ {
w0 := w0_y
w1 := w1_y
w2 := w2_y
for x := uint(boundsTL.X); x <= uint(boundsBR.X); x++ {
if (w0 | w1 | w2) >= 0 {
w0a := float32(w0) * invarea
w1a := float32(w1) * invarea
w2a := float32(w2) * invarea
pz := w0a*v0v.Pos.Z + w1a*v1v.Pos.Z + w2a*v2v.Pos.Z
if pz < fb.ZBuffer[x+y*fb.Width] {
fb.ZBuffer[x+y*fb.Width] = pz
r, g, b := texture.GetUv(
(w0a*v0v.Tex.X + w1a*v1v.Tex.X + w2a*v2v.Tex.X),
(w0a*v0v.Tex.Y + w1a*v1v.Tex.Y + w2a*v2v.Tex.Y),
)
fb.Data.Set(x, y, byte(float32(r)*intensity), byte(float32(g)*intensity), byte(float32(b)*intensity))
}
}
w0 += w0_xi
w1 += w1_xi
w2 += w2_xi
}
w0_y += w0_yi
w1_y += w1_yi
w2_y += w2_yi
}
}

222
renderer2/main.go Normal file
View File

@ -0,0 +1,222 @@
package main
import (
"flag"
"fmt"
"image"
"log"
"math"
"os"
"renderer1/hrend"
"runtime/pprof" // For performance profiling (unnecessary)
"time"
_ "image/jpeg"
rl "github.com/gen2brain/raylib-go/raylib"
)
const (
NearClip = 0.1
FarClip = 100
FOV = 90.0
ZOffset = 1.5
Movement = 1.0
Rotation = 0.25
LookLock = math.Pi / 32
Fps = 60
//ObjectFile = "../head.obj"
//TextureFile = "../head.jpg"
)
func must(err error) {
if err != nil {
panic(err)
}
}
// func loadDefault() (*hrend.ObjModel, hrend.Framebuffer) {
// log.Printf("Loading obj %s, texture %s", ObjectFile, TextureFile)
//
// of, err := os.Open(ObjectFile)
// must(err)
// defer of.Close()
// o, err := hrend.ParseObj(of)
// must(err)
//
// jf, err := os.Open(TextureFile)
// must(err)
// defer jf.Close()
// timg, _, err := image.Decode(jf)
// must(err)
// texture := hrend.NewTexture(timg, 4)
//
// return o, texture
// }
// However flag works... idk
var cpuprofile = flag.String("cpuprofile", "", "write cpu profile to file")
var width = flag.Int("width", 640, "width of window or frame")
var height = flag.Int("width", 480, "height of window or frame")
// var renderconfig = flag.String("renderconfig", "", "if set, rendering is written out")
var renderout = flag.String("renderout", "", "If set, rendering is done to a file instead of realtime")
var renderinput = flag.String("renderinput", "", "If not realtime, the inputs are taken from here.")
func IsRealtime() bool {
return *renderout == ""
}
// var dozbuf = flag.Bool("zbuffer", false, "Write zbuffer instead of image")
// var p6file = flag.String("p6file", "", "Output binary ppm to given file instead")
// var fov = flag.Float64("fov", 90, "Horizontal FOV in degrees")
// var xofs = flag.Float64("xofs", 0, "Offset image by x")
// var zofs = flag.Float64("zofs", -1.5, "Offset image by z (should be negative)")
// var repeat = flag.Int("repeat", 60, "Amount of times to repeat render")
// Do next inputs, whether they come from raylib or a file
func CameraInput(yaw, pitch float32) (float32, float32, hrend.Vec3f) {
mouse := rl.GetMouseDelta()
pitch += Rotation * mouse.Y / Fps
yaw += Rotation * mouse.X / Fps
pitch = hrend.Clamp(pitch, LookLock, math.Pi-LookLock)
newcamtrans := hrend.Vec3f{X: 0, Y: 0, Z: 0}
if rl.IsKeyDown(rl.KeyD) {
newcamtrans.X += Movement / Fps
}
if rl.IsKeyDown(rl.KeyA) {
newcamtrans.X -= Movement / Fps
}
// Moving forward moves in the negative z direction, since we FACE
// the -z axis (the camera does anyway)
if rl.IsKeyDown(rl.KeyW) {
newcamtrans.Z -= Movement / Fps
}
if rl.IsKeyDown(rl.KeyS) {
newcamtrans.Z += Movement / Fps
}
if rl.IsKeyDown(rl.KeySpace) {
newcamtrans.Y += Movement / Fps
}
if rl.IsKeyDown(rl.KeyLeftShift) {
newcamtrans.Y -= Movement / Fps
}
// translate the new camera movement based on the yaw
var moverot hrend.Mat44f
moverot.SetRotationY(-yaw)
newcamtrans = moverot.MultiplyPoint3(newcamtrans)
return pitch, yaw, newcamtrans
}
func main() {
log.Printf("Program start")
flag.Parse()
if *cpuprofile != "" {
log.Printf("CPU profiling requested, write to %s", *cpuprofile)
f, err := os.Create(*cpuprofile)
must(err)
defer f.Close()
err = pprof.StartCPUProfile(f)
must(err)
defer pprof.StopCPUProfile()
}
Width := uint(*width)
Height := uint(*height)
var fb hrend.Framebuffer
if IsRealtime() {
rl.InitWindow(int32(Width), int32(Height), "Simple renderer with raylib")
defer rl.CloseWindow()
rl.SetTargetFPS(Fps)
rl.DisableCursor()
rfb := NewRaylibBuffer(Width, Height)
defer rl.UnloadTexture(rfb.Texture)
defer rl.UnloadImageColors(rfb.Data)
defer rl.UnloadImage(rfb.Image)
fb = rfb
}
rb := hrend.NewRenderbuffer(fb, Width, Height)
//o, texture := loadDefault()
var thing hrend.Vec2i
log.Print(thing)
var projection, viewport hrend.Mat44f
// These don't really change
projection.SetProjection(float32(FOV), float32(Width)/float32(Height), NearClip, FarClip)
viewport.SetViewportSimple(int(Width), int(Height), 1) //65535)
var timer hrend.FrameTimer
camtrans := hrend.Vec3f{X: 0, Y: 0, Z: ZOffset}
var newcamtrans hrend.Vec3f
camup := hrend.Vec3f{X: 0, Y: 1, Z: 0}
// In our system, 0 degree yaw is facing -Z, into the scene
yaw := float32(0)
pitch := float32(math.Pi / 2) // Start looking flat
var camera hrend.Mat44f
log.Printf("Starting render loop")
for !rl.WindowShouldClose() {
start := time.Now()
yaw, pitch, newcamtrans = CameraInput(yaw, pitch)
camtrans = *camtrans.Add(&newcamtrans)
lookvec := camera.SetCamera(&camtrans, yaw, pitch, &camup)
screenmat := camera.Inverse().Multiply(&projection)
screenmat = screenmat.Multiply(&viewport)
rb.ResetZBuffer()
for y := range Height {
for x := range Width {
fb.Set(x, y, 0, 0, 0)
}
}
var sc [3]hrend.Vertex
for _, f := range o.Faces {
// Precompute perspective for vertices to save time. Notice Z
// is not considered: is this orthographic projection? Yeah probably...
for i := range 3 { // Triangles, bro
sc[i] = f[i]
sc[i].Pos = screenmat.MultiplyPoint3(f[i].Pos)
}
l1 := f[2].Pos.Sub(&f[0].Pos)
n := l1.CrossProduct(f[1].Pos.Sub(&f[0].Pos))
n = n.Normalize()
intensity := n.MultSimp(&lookvec)
if intensity < 0 {
intensity = 0
}
hrend.TriangleTextured(&rb, texture, intensity, sc[0], sc[1], sc[2])
//hrend.TriangleFlat(&rb, hrend.Col2Uint(byte(255*intensity), byte(255*intensity), byte(255*intensity)), sc[0].Pos, sc[1].Pos, sc[2].Pos)
}
rl.UpdateTexture(fb.Texture, fb.Data)
timer.Add(time.Since(start), 10)
if IsRealtime() {
rl.BeginDrawing()
rl.ClearBackground(rl.RayWhite)
rl.DrawTexture(fb.Texture, 0, 0, rl.White)
rl.DrawText(fmt.Sprintf("Frame: %.2fms", timer.LastAverage.Seconds()*1000), 5, 5, 20, rl.Red)
rl.EndDrawing()
} else {
}
}
}

64
renderer2/raybuffer.go Normal file
View File

@ -0,0 +1,64 @@
package main
import (
rl "github.com/gen2brain/raylib-go/raylib"
"log"
)
type RaylibBuffer struct {
Data []rl.Color
Image *rl.Image
Texture rl.Texture2D
Width uint
Height uint
}
func NewRaylibBuffer(width uint, height uint) *RaylibBuffer {
log.Printf("Creating new raylib framebuffer using texture + image")
//rl.NewTexture2D(1, Width, Height, 0, )
rlimage := rl.GenImageColor(int(width), int(height), rl.Black)
rl.ImageFormat(rlimage, rl.UncompressedR8g8b8a8)
log.Printf("Generated baseline image: %v", rlimage)
rltexture := rl.LoadTextureFromImage(rlimage)
log.Printf("Generated texture from image")
data := rl.LoadImageColors(rlimage)
log.Printf("Generated pixel data from image")
return &RaylibBuffer{
Data: data,
Image: rlimage,
Texture: rltexture,
Width: width,
Height: height,
}
}
func (fb *RaylibBuffer) Dims() (uint, uint) {
return fb.Width, fb.Height
}
// Sure hope this gets inlined...
func (fb *RaylibBuffer) Set(x uint, y uint, r byte, g byte, b byte) {
if x >= fb.Width || y >= fb.Height {
return
}
fb.Data[x+y*fb.Width].R = r
fb.Data[x+y*fb.Width].G = g
fb.Data[x+y*fb.Width].B = b
}
func (fb *RaylibBuffer) Get(x uint, y uint) (byte, byte, byte) {
if x >= fb.Width || y >= fb.Height {
return 0, 0, 0
}
return fb.Data[x+y*fb.Width].R,
fb.Data[x+y*fb.Width].G,
fb.Data[x+y*fb.Width].B
}
func (fb *RaylibBuffer) GetUv(u float32, v float32) (byte, byte, byte) {
x := uint(float32(fb.Width)*u) & (fb.Width - 1)
y := uint(float32(fb.Height)*(1-v)) & (fb.Height - 1)
return fb.Data[x+y*fb.Width].R,
fb.Data[x+y*fb.Width].G,
fb.Data[x+y*fb.Width].B
}

17
renderer2/texturegen.go Normal file
View File

@ -0,0 +1,17 @@
package main
import (
"image"
"image/color"
//"renderer1/hrend"
)
func Checkerboard(cols []color.Color, size int) image.Image {
result := image.NewRGBA(image.Rect(0, 0, size, size))
for y := range size {
for x := range size {
result.Set(x, y, cols[(x+y)%len(cols)])
}
}
return result
}