#include "haloo3d/haloo3d.h" #include "haloo3d/haloo3dex_gen.h" #include "haloo3d/haloo3dex_img.h" #include "haloo3d/haloo3dex_obj.h" #include "haloo3d/haloo3dex_print.h" #include "unigi/unigi.headers/src/main.h" #include "unigi/unigi.platform.sdl1/src/main.c" // #include "unigi/unigi.ext/src/main.c" #include "camera.h" #include "resources/flower.h" #include #include #define DOLIGHTING #define FASTTRIS #define WIDTH 640 #define HEIGHT 480 #define ASPECT ((float)WIDTH / HEIGHT) #define FOV 90.0 #define NEARCLIP 0.01 #define FARCLIP 100.0 #define LIGHTANG -MPI / 4.0 #define MINLIGHT 0.25 #define SKYSCALE 30 #define AVGWEIGHT 0.85 // this is the number of DYNAMIC objects.. #define NUMOBJECTS 4 #define NUMFLOWERS 300 #define PLANESIZE 61 #define FLOWERIND (NUMOBJECTS - 1) #define NUMINSTANCES (NUMOBJECTS - 1 + NUMFLOWERS) #define MAXCAM 1200 #ifdef FASTTRIS #define WBUFCLEAR FARCLIP #define TRIFUNC haloo3d_texturedtriangle_fast #else #define WBUFCLEAR 0 #define TRIFUNC haloo3d_texturedtriangle #endif #define CALCTIME(thistime, start, end, sum) \ float thistime = 1000.0 * (float)(end - start) / CLOCKS_PER_SEC; \ if (sum == 0) \ sum = thistime; \ sum = AVGWEIGHT * sum + (1 - AVGWEIGHT) * thistime; uint16_t redflower[64] = H3D_FLOWER(0xFE55, 0xF6C4, 0xFFE0, 0xFD44, 0xF492); int main(int argc, char **argv) { if (argc != 4) { eprintf("WARN: THIS PROGRAM GENERATES A LOT OF FILES!\n"); dieerr("You must pass in the following:\n- obj file .obj\n- texture file " ".ppm\n- camera file (xofs yofs zofs yawdeg pitchdeg)\n"); } // Load the junk + generate stuff haloo3d_obj models[NUMOBJECTS]; haloo3d_fb textures[NUMOBJECTS]; haloo3d_obj_loadfile(models, argv[1]); haloo3d_img_loadppmfile(textures, argv[2]); haloo3d_gen_1pxgradient(textures + 1, 0xF44F, 0xF001, 32); haloo3d_gen_skybox(models + 1); uint16_t checkcols[2] = {0xF0A0, 0xF270}; haloo3d_gen_checkerboard(textures + 2, checkcols, 2, 32); haloo3d_gen_sloped(models + 2, PLANESIZE, 1.0, 1.25); haloo3d_fb_init_tex(textures + 3, 8, 8); memcpy(textures[3].buffer, redflower, sizeof(uint16_t) * 64); haloo3d_gen_crossquad(models + 3, textures + 3); camset cams[MAXCAM]; int numcams = readcam(cams, MAXCAM, argv[3]); // Create the camera matrix, which DOES change. In this one, // we move the camera instead of the model haloo3d_camera camera; haloo3d_camera_init(&camera); // Create the perspective matrix, which doesn't change mfloat_t perspective[MAT4_SIZE]; haloo3d_perspective(perspective, FOV, ASPECT, NEARCLIP, FARCLIP); // Lighting. Note that for performance, the lighting is always calculated // against the base model, and is thus not realistic if the object rotates in // the world. This can be fixed easily, since each object gets its own // lighting vector, which can easily be rotated in the opposite direction of // the model struct vec3 light; vec3(light.v, 0, -MCOS(LIGHTANG), MSIN(LIGHTANG)); int totalfaces = 0; int totalverts = 0; haloo3d_obj_instance objects[NUMINSTANCES]; for (int i = 0; i < NUMINSTANCES; i++) { if (i < FLOWERIND) { haloo3d_objin_init(objects + i, models + i, textures + i); } else { // Setup the flowers haloo3d_objin_init(objects + i, models + FLOWERIND, textures + FLOWERIND); objects[i].cullbackface = 0; objects[i].scale = 0.5; int rvi = rand() % models[2].numvertices; vec3_assign(objects[i].pos.v, models[2].vertices[rvi].v); objects[i].pos.y += 0.5; } totalfaces += objects[i].model->numfaces; totalverts += objects[i].model->numvertices; } #ifdef DOLIGHTING objects[0].lighting = &light; objects[2].lighting = &light; #endif objects[0].pos.y = 1; objects[1].scale = SKYSCALE; // Now we create a framebuffer to draw the triangle into haloo3d_fb fb; haloo3d_fb_init(&fb, WIDTH, HEIGHT); unigi_type_event event; unigi_type_resolution res; res.width = WIDTH; res.height = HEIGHT; res.depth = 32; // Not actually 32 bit // Printing to screen needs tracking haloo3d_print_tracker t; char printbuf[8192]; haloo3d_print_initdefault(&t, printbuf, sizeof(printbuf)); t.fb = &fb; // t.logprints = 1; // Storage stuff mfloat_t matrix3d[MAT4_SIZE], matrixcam[MAT4_SIZE], matrixscreen[MAT4_SIZE], matrixmodel[MAT4_SIZE]; haloo3d_facef outfaces[H3D_FACEF_MAXCLIP]; struct vec3 tmp1; haloo3d_facef face, baseface; struct vec4 *vert_precalc; mallocordie(vert_precalc, sizeof(struct vec4) * H3D_OBJ_MAXVERTICES); clock_t begin, end; float sumframe = 0; int totaldrawn = 0; eprintf("Scene has %d tris, %d verts\n", totalfaces, totalverts); // Init unigi system sprintf(printbuf, "scene.exe - %s %s %s", argv[1], argv[2], argv[3]); unigi_graphics_init(); unigi_window_create(res, printbuf); // ----------------------------------- // Actual rendering // ----------------------------------- int cami = 0; while (1) { unigi_event_get(&event); if (event.type == unigi_enum_event_input_keyboard) { exit(0); } begin = clock(); totaldrawn = 0; haloo3d_print_refresh(&t); camera.pos.x = cams[cami].xofs; camera.pos.y = cams[cami].yofs; camera.pos.z = cams[cami].zofs; camera.yaw = cams[cami].yaw; camera.pitch = cams[cami].pitch + MPI_2; // REMEMBER TO CLEAR DEPTH BUFFER haloo3d_fb_cleardepth(&fb, WBUFCLEAR); // Screen matrix calc. We multiply the modelview matrix with this later haloo3d_camera_calclook(&camera, matrixcam); mat4_inverse(matrixcam, matrixcam); mat4_multiply(matrixscreen, perspective, matrixcam); // Iterate over objects for (int i = 0; i < NUMINSTANCES; i++) { // Setup final model matrix and the precalced vertices vec3_add(tmp1.v, objects[i].pos.v, objects[i].lookvec.v); haloo3d_my_lookat(matrixmodel, objects[i].pos.v, tmp1.v, camera.up.v); haloo3d_mat4_scale(matrixmodel, objects[i].scale); mat4_multiply(matrix3d, matrixscreen, matrixmodel); haloo3d_precalc_verts(objects[i].model, matrix3d, vert_precalc); // Iterate over object faces for (int fi = 0; fi < objects[i].model->numfaces; fi++) { // Copy face values out of precalc array and clip them haloo3d_make_facef(objects[i].model->faces[fi], vert_precalc, objects[i].model->vtexture, face); int tris = haloo3d_facef_clip(face, outfaces); for (int ti = 0; ti < tris; ti++) { int backface = !haloo3d_facef_finalize(outfaces[ti]); if (objects[i].cullbackface && backface) { continue; } totaldrawn++; mfloat_t intensity = 1.0; if (objects[i].lighting) { haloo3d_obj_facef(objects[i].model, objects[i].model->faces[fi], baseface); intensity = haloo3d_calc_light(objects[i].lighting->v, MINLIGHT, baseface); } // We still have to convert the points into the view haloo3d_facef_viewport_into(outfaces[ti], WIDTH, HEIGHT); TRIFUNC(&fb, objects[i].texture, intensity, outfaces[ti]); } } } end = clock(); CALCTIME(thisframetime, begin, end, sumframe); haloo3d_print(&t, "Frame: %.2f (%.2f)\nTris: %d / %d\nVerts: %d\n", thisframetime, sumframe, totaldrawn, totalfaces, totalverts); // sprintf(fname, "scene_%04d.ppm", cami); // haloo3d_img_writeppmfile(&fb, fname); unigi_graphics_blit(0, (unigi_type_color *)fb.buffer, res.width * res.height); unigi_graphics_flush(); cami = (cami + 1) % numcams; } for (int i = 0; i < NUMOBJECTS; i++) { haloo3d_obj_free(models + i); haloo3d_fb_free(textures + i); } }