#version 420 #define A_GPU 1 #define A_GLSL 1 #define FSR_RCAS_F 1 //#define FSR_RCAS_DENOISE 1 in vec2 fragTexCoord; in vec4 fragColor; // Input uniform values uniform sampler2D texture0; uniform vec2 dstSize; uniform float sharpness; // Output fragment color out vec4 finalColor; //============================================================================================================================== // // [A] SHADER PORTABILITY 1.20210629 // //============================================================================================================================== // FidelityFX Super Resolution Sample // // Copyright (c) 2021 Advanced Micro Devices, Inc. All rights reserved. // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files(the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and / or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions : // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. //------------------------------------------------------------------------------------------------------------------------------ // MIT LICENSE // =========== // Copyright (c) 2014 Michal Drobot (for concepts used in "FLOAT APPROXIMATIONS"). // ----------- // Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation // files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, // modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following conditions: // ----------- // The above copyright notice and this permission notice shall be included in all copies or substantial portions of the // Software. // ----------- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE // WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR // COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, // ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. //------------------------------------------------------------------------------------------------------------------------------ // ABOUT // ===== // Common central point for high-level shading language and C portability for various shader headers. //------------------------------------------------------------------------------------------------------------------------------ // DEFINES // ======= // A_CPU ..... Include the CPU related code. // A_GPU ..... Include the GPU related code. // A_GLSL .... Using GLSL. // A_HLSL .... Using HLSL. // A_HLSL_6_2 Using HLSL 6.2 with new 'uint16_t' and related types (requires '-enable-16bit-types'). // A_NO_16_BIT_CAST Don't use instructions that are not availabe in SPIR-V (needed for running A_HLSL_6_2 on Vulkan) // A_GCC ..... Using a GCC compatible compiler (else assume MSVC compatible compiler by default). // ======= // A_BYTE .... Support 8-bit integer. // A_HALF .... Support 16-bit integer and floating point. // A_LONG .... Support 64-bit integer. // A_DUBL .... Support 64-bit floating point. // ======= // A_WAVE .... Support wave-wide operations. //------------------------------------------------------------------------------------------------------------------------------ // To get #include "ffx_a.h" working in GLSL use '#extension GL_GOOGLE_include_directive:require'. //------------------------------------------------------------------------------------------------------------------------------ // SIMPLIFIED TYPE SYSTEM // ====================== // - All ints will be unsigned with exception of when signed is required. // - Type naming simplified and shortened "A<#components>", // - H = 16-bit float (half) // - F = 32-bit float (float) // - D = 64-bit float (double) // - P = 1-bit integer (predicate, not using bool because 'B' is used for byte) // - B = 8-bit integer (byte) // - W = 16-bit integer (word) // - U = 32-bit integer (unsigned) // - L = 64-bit integer (long) // - Using "AS<#components>" for signed when required. //------------------------------------------------------------------------------------------------------------------------------ // TODO // ==== // - Make sure 'ALerp*(a,b,m)' does 'b*m+(-a*m+a)' (2 ops). //------------------------------------------------------------------------------------------------------------------------------ // CHANGE LOG // ========== // 20200914 - Expanded wave ops and prx code. // 20200713 - Added [ZOL] section, fixed serious bugs in sRGB and Rec.709 color conversion code, etc. //============================================================================================================================== //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // COMMON //============================================================================================================================== #define A_2PI 6.28318530718 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // // // CPU // // //============================================================================================================================== #ifdef A_CPU // Supporting user defined overrides. #ifndef A_RESTRICT #define A_RESTRICT __restrict #endif //------------------------------------------------------------------------------------------------------------------------------ #ifndef A_STATIC #define A_STATIC static #endif //------------------------------------------------------------------------------------------------------------------------------ // Same types across CPU and GPU. // Predicate uses 32-bit integer (C friendly bool). typedef uint32_t AP1; typedef float AF1; typedef double AD1; typedef uint8_t AB1; typedef uint16_t AW1; typedef uint32_t AU1; typedef uint64_t AL1; typedef int8_t ASB1; typedef int16_t ASW1; typedef int32_t ASU1; typedef int64_t ASL1; //------------------------------------------------------------------------------------------------------------------------------ #define AD1_(a) ((AD1)(a)) #define AF1_(a) ((AF1)(a)) #define AL1_(a) ((AL1)(a)) #define AU1_(a) ((AU1)(a)) //------------------------------------------------------------------------------------------------------------------------------ #define ASL1_(a) ((ASL1)(a)) #define ASU1_(a) ((ASU1)(a)) //------------------------------------------------------------------------------------------------------------------------------ A_STATIC AU1 AU1_AF1(AF1 a){union{AF1 f;AU1 u;}bits;bits.f=a;return bits.u;} //------------------------------------------------------------------------------------------------------------------------------ #define A_TRUE 1 #define A_FALSE 0 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // // CPU/GPU PORTING // //------------------------------------------------------------------------------------------------------------------------------ // Get CPU and GPU to share all setup code, without duplicate code paths. // This uses a lower-case prefix for special vector constructs. // - In C restrict pointers are used. // - In the shading language, in/inout/out arguments are used. // This depends on the ability to access a vector value in both languages via array syntax (aka color[2]). //============================================================================================================================== //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // VECTOR ARGUMENT/RETURN/INITIALIZATION PORTABILITY //============================================================================================================================== #define retAD2 AD1 *A_RESTRICT #define retAD3 AD1 *A_RESTRICT #define retAD4 AD1 *A_RESTRICT #define retAF2 AF1 *A_RESTRICT #define retAF3 AF1 *A_RESTRICT #define retAF4 AF1 *A_RESTRICT #define retAL2 AL1 *A_RESTRICT #define retAL3 AL1 *A_RESTRICT #define retAL4 AL1 *A_RESTRICT #define retAU2 AU1 *A_RESTRICT #define retAU3 AU1 *A_RESTRICT #define retAU4 AU1 *A_RESTRICT //------------------------------------------------------------------------------------------------------------------------------ #define inAD2 AD1 *A_RESTRICT #define inAD3 AD1 *A_RESTRICT #define inAD4 AD1 *A_RESTRICT #define inAF2 AF1 *A_RESTRICT #define inAF3 AF1 *A_RESTRICT #define inAF4 AF1 *A_RESTRICT #define inAL2 AL1 *A_RESTRICT #define inAL3 AL1 *A_RESTRICT #define inAL4 AL1 *A_RESTRICT #define inAU2 AU1 *A_RESTRICT #define inAU3 AU1 *A_RESTRICT #define inAU4 AU1 *A_RESTRICT //------------------------------------------------------------------------------------------------------------------------------ #define inoutAD2 AD1 *A_RESTRICT #define inoutAD3 AD1 *A_RESTRICT #define inoutAD4 AD1 *A_RESTRICT #define inoutAF2 AF1 *A_RESTRICT #define inoutAF3 AF1 *A_RESTRICT #define inoutAF4 AF1 *A_RESTRICT #define inoutAL2 AL1 *A_RESTRICT #define inoutAL3 AL1 *A_RESTRICT #define inoutAL4 AL1 *A_RESTRICT #define inoutAU2 AU1 *A_RESTRICT #define inoutAU3 AU1 *A_RESTRICT #define inoutAU4 AU1 *A_RESTRICT //------------------------------------------------------------------------------------------------------------------------------ #define outAD2 AD1 *A_RESTRICT #define outAD3 AD1 *A_RESTRICT #define outAD4 AD1 *A_RESTRICT #define outAF2 AF1 *A_RESTRICT #define outAF3 AF1 *A_RESTRICT #define outAF4 AF1 *A_RESTRICT #define outAL2 AL1 *A_RESTRICT #define outAL3 AL1 *A_RESTRICT #define outAL4 AL1 *A_RESTRICT #define outAU2 AU1 *A_RESTRICT #define outAU3 AU1 *A_RESTRICT #define outAU4 AU1 *A_RESTRICT //------------------------------------------------------------------------------------------------------------------------------ #define varAD2(x) AD1 x[2] #define varAD3(x) AD1 x[3] #define varAD4(x) AD1 x[4] #define varAF2(x) AF1 x[2] #define varAF3(x) AF1 x[3] #define varAF4(x) AF1 x[4] #define varAL2(x) AL1 x[2] #define varAL3(x) AL1 x[3] #define varAL4(x) AL1 x[4] #define varAU2(x) AU1 x[2] #define varAU3(x) AU1 x[3] #define varAU4(x) AU1 x[4] //------------------------------------------------------------------------------------------------------------------------------ #define initAD2(x,y) {x,y} #define initAD3(x,y,z) {x,y,z} #define initAD4(x,y,z,w) {x,y,z,w} #define initAF2(x,y) {x,y} #define initAF3(x,y,z) {x,y,z} #define initAF4(x,y,z,w) {x,y,z,w} #define initAL2(x,y) {x,y} #define initAL3(x,y,z) {x,y,z} #define initAL4(x,y,z,w) {x,y,z,w} #define initAU2(x,y) {x,y} #define initAU3(x,y,z) {x,y,z} #define initAU4(x,y,z,w) {x,y,z,w} //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // SCALAR RETURN OPS //------------------------------------------------------------------------------------------------------------------------------ // TODO // ==== // - Replace transcendentals with manual versions. //============================================================================================================================== #ifdef A_GCC A_STATIC AD1 AAbsD1(AD1 a){return __builtin_fabs(a);} A_STATIC AF1 AAbsF1(AF1 a){return __builtin_fabsf(a);} A_STATIC AU1 AAbsSU1(AU1 a){return AU1_(__builtin_abs(ASU1_(a)));} A_STATIC AL1 AAbsSL1(AL1 a){return AL1_(__builtin_llabs(ASL1_(a)));} #else A_STATIC AD1 AAbsD1(AD1 a){return fabs(a);} A_STATIC AF1 AAbsF1(AF1 a){return fabsf(a);} A_STATIC AU1 AAbsSU1(AU1 a){return AU1_(abs(ASU1_(a)));} A_STATIC AL1 AAbsSL1(AL1 a){return AL1_(labs((long)ASL1_(a)));} #endif //------------------------------------------------------------------------------------------------------------------------------ #ifdef A_GCC A_STATIC AD1 ACosD1(AD1 a){return __builtin_cos(a);} A_STATIC AF1 ACosF1(AF1 a){return __builtin_cosf(a);} #else A_STATIC AD1 ACosD1(AD1 a){return cos(a);} A_STATIC AF1 ACosF1(AF1 a){return cosf(a);} #endif //------------------------------------------------------------------------------------------------------------------------------ A_STATIC AD1 ADotD2(inAD2 a,inAD2 b){return a[0]*b[0]+a[1]*b[1];} A_STATIC AD1 ADotD3(inAD3 a,inAD3 b){return a[0]*b[0]+a[1]*b[1]+a[2]*b[2];} A_STATIC AD1 ADotD4(inAD4 a,inAD4 b){return a[0]*b[0]+a[1]*b[1]+a[2]*b[2]+a[3]*b[3];} A_STATIC AF1 ADotF2(inAF2 a,inAF2 b){return a[0]*b[0]+a[1]*b[1];} A_STATIC AF1 ADotF3(inAF3 a,inAF3 b){return a[0]*b[0]+a[1]*b[1]+a[2]*b[2];} A_STATIC AF1 ADotF4(inAF4 a,inAF4 b){return a[0]*b[0]+a[1]*b[1]+a[2]*b[2]+a[3]*b[3];} //------------------------------------------------------------------------------------------------------------------------------ #ifdef A_GCC A_STATIC AD1 AExp2D1(AD1 a){return __builtin_exp2(a);} A_STATIC AF1 AExp2F1(AF1 a){return __builtin_exp2f(a);} #else A_STATIC AD1 AExp2D1(AD1 a){return exp2(a);} A_STATIC AF1 AExp2F1(AF1 a){return exp2f(a);} #endif //------------------------------------------------------------------------------------------------------------------------------ #ifdef A_GCC A_STATIC AD1 AFloorD1(AD1 a){return __builtin_floor(a);} A_STATIC AF1 AFloorF1(AF1 a){return __builtin_floorf(a);} #else A_STATIC AD1 AFloorD1(AD1 a){return floor(a);} A_STATIC AF1 AFloorF1(AF1 a){return floorf(a);} #endif //------------------------------------------------------------------------------------------------------------------------------ A_STATIC AD1 ALerpD1(AD1 a,AD1 b,AD1 c){return b*c+(-a*c+a);} A_STATIC AF1 ALerpF1(AF1 a,AF1 b,AF1 c){return b*c+(-a*c+a);} //------------------------------------------------------------------------------------------------------------------------------ #ifdef A_GCC A_STATIC AD1 ALog2D1(AD1 a){return __builtin_log2(a);} A_STATIC AF1 ALog2F1(AF1 a){return __builtin_log2f(a);} #else A_STATIC AD1 ALog2D1(AD1 a){return log2(a);} A_STATIC AF1 ALog2F1(AF1 a){return log2f(a);} #endif //------------------------------------------------------------------------------------------------------------------------------ A_STATIC AD1 AMaxD1(AD1 a,AD1 b){return a>b?a:b;} A_STATIC AF1 AMaxF1(AF1 a,AF1 b){return a>b?a:b;} A_STATIC AL1 AMaxL1(AL1 a,AL1 b){return a>b?a:b;} A_STATIC AU1 AMaxU1(AU1 a,AU1 b){return a>b?a:b;} //------------------------------------------------------------------------------------------------------------------------------ // These follow the convention that A integer types don't have signage, until they are operated on. A_STATIC AL1 AMaxSL1(AL1 a,AL1 b){return (ASL1_(a)>ASL1_(b))?a:b;} A_STATIC AU1 AMaxSU1(AU1 a,AU1 b){return (ASU1_(a)>ASU1_(b))?a:b;} //------------------------------------------------------------------------------------------------------------------------------ A_STATIC AD1 AMinD1(AD1 a,AD1 b){return a>ASL1_(b));} A_STATIC AU1 AShrSU1(AU1 a,AU1 b){return AU1_(ASU1_(a)>>ASU1_(b));} //------------------------------------------------------------------------------------------------------------------------------ #ifdef A_GCC A_STATIC AD1 ASinD1(AD1 a){return __builtin_sin(a);} A_STATIC AF1 ASinF1(AF1 a){return __builtin_sinf(a);} #else A_STATIC AD1 ASinD1(AD1 a){return sin(a);} A_STATIC AF1 ASinF1(AF1 a){return sinf(a);} #endif //------------------------------------------------------------------------------------------------------------------------------ #ifdef A_GCC A_STATIC AD1 ASqrtD1(AD1 a){return __builtin_sqrt(a);} A_STATIC AF1 ASqrtF1(AF1 a){return __builtin_sqrtf(a);} #else A_STATIC AD1 ASqrtD1(AD1 a){return sqrt(a);} A_STATIC AF1 ASqrtF1(AF1 a){return sqrtf(a);} #endif //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // SCALAR RETURN OPS - DEPENDENT //============================================================================================================================== A_STATIC AD1 AClampD1(AD1 x,AD1 n,AD1 m){return AMaxD1(n,AMinD1(x,m));} A_STATIC AF1 AClampF1(AF1 x,AF1 n,AF1 m){return AMaxF1(n,AMinF1(x,m));} //------------------------------------------------------------------------------------------------------------------------------ A_STATIC AD1 AFractD1(AD1 a){return a-AFloorD1(a);} A_STATIC AF1 AFractF1(AF1 a){return a-AFloorF1(a);} //------------------------------------------------------------------------------------------------------------------------------ A_STATIC AD1 APowD1(AD1 a,AD1 b){return AExp2D1(b*ALog2D1(a));} A_STATIC AF1 APowF1(AF1 a,AF1 b){return AExp2F1(b*ALog2F1(a));} //------------------------------------------------------------------------------------------------------------------------------ A_STATIC AD1 ARsqD1(AD1 a){return ARcpD1(ASqrtD1(a));} A_STATIC AF1 ARsqF1(AF1 a){return ARcpF1(ASqrtF1(a));} //------------------------------------------------------------------------------------------------------------------------------ A_STATIC AD1 ASatD1(AD1 a){return AMinD1(1.0,AMaxD1(0.0,a));} A_STATIC AF1 ASatF1(AF1 a){return AMinF1(1.0f,AMaxF1(0.0f,a));} //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // VECTOR OPS //------------------------------------------------------------------------------------------------------------------------------ // These are added as needed for production or prototyping, so not necessarily a complete set. // They follow a convention of taking in a destination and also returning the destination value to increase utility. //============================================================================================================================== A_STATIC retAD2 opAAbsD2(outAD2 d,inAD2 a){d[0]=AAbsD1(a[0]);d[1]=AAbsD1(a[1]);return d;} A_STATIC retAD3 opAAbsD3(outAD3 d,inAD3 a){d[0]=AAbsD1(a[0]);d[1]=AAbsD1(a[1]);d[2]=AAbsD1(a[2]);return d;} A_STATIC retAD4 opAAbsD4(outAD4 d,inAD4 a){d[0]=AAbsD1(a[0]);d[1]=AAbsD1(a[1]);d[2]=AAbsD1(a[2]);d[3]=AAbsD1(a[3]);return d;} //------------------------------------------------------------------------------------------------------------------------------ A_STATIC retAF2 opAAbsF2(outAF2 d,inAF2 a){d[0]=AAbsF1(a[0]);d[1]=AAbsF1(a[1]);return d;} A_STATIC retAF3 opAAbsF3(outAF3 d,inAF3 a){d[0]=AAbsF1(a[0]);d[1]=AAbsF1(a[1]);d[2]=AAbsF1(a[2]);return d;} A_STATIC retAF4 opAAbsF4(outAF4 d,inAF4 a){d[0]=AAbsF1(a[0]);d[1]=AAbsF1(a[1]);d[2]=AAbsF1(a[2]);d[3]=AAbsF1(a[3]);return d;} //============================================================================================================================== A_STATIC retAD2 opAAddD2(outAD2 d,inAD2 a,inAD2 b){d[0]=a[0]+b[0];d[1]=a[1]+b[1];return d;} A_STATIC retAD3 opAAddD3(outAD3 d,inAD3 a,inAD3 b){d[0]=a[0]+b[0];d[1]=a[1]+b[1];d[2]=a[2]+b[2];return d;} A_STATIC retAD4 opAAddD4(outAD4 d,inAD4 a,inAD4 b){d[0]=a[0]+b[0];d[1]=a[1]+b[1];d[2]=a[2]+b[2];d[3]=a[3]+b[3];return d;} //------------------------------------------------------------------------------------------------------------------------------ A_STATIC retAF2 opAAddF2(outAF2 d,inAF2 a,inAF2 b){d[0]=a[0]+b[0];d[1]=a[1]+b[1];return d;} A_STATIC retAF3 opAAddF3(outAF3 d,inAF3 a,inAF3 b){d[0]=a[0]+b[0];d[1]=a[1]+b[1];d[2]=a[2]+b[2];return d;} A_STATIC retAF4 opAAddF4(outAF4 d,inAF4 a,inAF4 b){d[0]=a[0]+b[0];d[1]=a[1]+b[1];d[2]=a[2]+b[2];d[3]=a[3]+b[3];return d;} //============================================================================================================================== A_STATIC retAD2 opAAddOneD2(outAD2 d,inAD2 a,AD1 b){d[0]=a[0]+b;d[1]=a[1]+b;return d;} A_STATIC retAD3 opAAddOneD3(outAD3 d,inAD3 a,AD1 b){d[0]=a[0]+b;d[1]=a[1]+b;d[2]=a[2]+b;return d;} A_STATIC retAD4 opAAddOneD4(outAD4 d,inAD4 a,AD1 b){d[0]=a[0]+b;d[1]=a[1]+b;d[2]=a[2]+b;d[3]=a[3]+b;return d;} //------------------------------------------------------------------------------------------------------------------------------ A_STATIC retAF2 opAAddOneF2(outAF2 d,inAF2 a,AF1 b){d[0]=a[0]+b;d[1]=a[1]+b;return d;} A_STATIC retAF3 opAAddOneF3(outAF3 d,inAF3 a,AF1 b){d[0]=a[0]+b;d[1]=a[1]+b;d[2]=a[2]+b;return d;} A_STATIC retAF4 opAAddOneF4(outAF4 d,inAF4 a,AF1 b){d[0]=a[0]+b;d[1]=a[1]+b;d[2]=a[2]+b;d[3]=a[3]+b;return d;} //============================================================================================================================== A_STATIC retAD2 opACpyD2(outAD2 d,inAD2 a){d[0]=a[0];d[1]=a[1];return d;} A_STATIC retAD3 opACpyD3(outAD3 d,inAD3 a){d[0]=a[0];d[1]=a[1];d[2]=a[2];return d;} A_STATIC retAD4 opACpyD4(outAD4 d,inAD4 a){d[0]=a[0];d[1]=a[1];d[2]=a[2];d[3]=a[3];return d;} //------------------------------------------------------------------------------------------------------------------------------ A_STATIC retAF2 opACpyF2(outAF2 d,inAF2 a){d[0]=a[0];d[1]=a[1];return d;} A_STATIC retAF3 opACpyF3(outAF3 d,inAF3 a){d[0]=a[0];d[1]=a[1];d[2]=a[2];return d;} A_STATIC retAF4 opACpyF4(outAF4 d,inAF4 a){d[0]=a[0];d[1]=a[1];d[2]=a[2];d[3]=a[3];return d;} //============================================================================================================================== A_STATIC retAD2 opALerpD2(outAD2 d,inAD2 a,inAD2 b,inAD2 c){d[0]=ALerpD1(a[0],b[0],c[0]);d[1]=ALerpD1(a[1],b[1],c[1]);return d;} A_STATIC retAD3 opALerpD3(outAD3 d,inAD3 a,inAD3 b,inAD3 c){d[0]=ALerpD1(a[0],b[0],c[0]);d[1]=ALerpD1(a[1],b[1],c[1]);d[2]=ALerpD1(a[2],b[2],c[2]);return d;} A_STATIC retAD4 opALerpD4(outAD4 d,inAD4 a,inAD4 b,inAD4 c){d[0]=ALerpD1(a[0],b[0],c[0]);d[1]=ALerpD1(a[1],b[1],c[1]);d[2]=ALerpD1(a[2],b[2],c[2]);d[3]=ALerpD1(a[3],b[3],c[3]);return d;} //------------------------------------------------------------------------------------------------------------------------------ A_STATIC retAF2 opALerpF2(outAF2 d,inAF2 a,inAF2 b,inAF2 c){d[0]=ALerpF1(a[0],b[0],c[0]);d[1]=ALerpF1(a[1],b[1],c[1]);return d;} A_STATIC retAF3 opALerpF3(outAF3 d,inAF3 a,inAF3 b,inAF3 c){d[0]=ALerpF1(a[0],b[0],c[0]);d[1]=ALerpF1(a[1],b[1],c[1]);d[2]=ALerpF1(a[2],b[2],c[2]);return d;} A_STATIC retAF4 opALerpF4(outAF4 d,inAF4 a,inAF4 b,inAF4 c){d[0]=ALerpF1(a[0],b[0],c[0]);d[1]=ALerpF1(a[1],b[1],c[1]);d[2]=ALerpF1(a[2],b[2],c[2]);d[3]=ALerpF1(a[3],b[3],c[3]);return d;} //============================================================================================================================== A_STATIC retAD2 opALerpOneD2(outAD2 d,inAD2 a,inAD2 b,AD1 c){d[0]=ALerpD1(a[0],b[0],c);d[1]=ALerpD1(a[1],b[1],c);return d;} A_STATIC retAD3 opALerpOneD3(outAD3 d,inAD3 a,inAD3 b,AD1 c){d[0]=ALerpD1(a[0],b[0],c);d[1]=ALerpD1(a[1],b[1],c);d[2]=ALerpD1(a[2],b[2],c);return d;} A_STATIC retAD4 opALerpOneD4(outAD4 d,inAD4 a,inAD4 b,AD1 c){d[0]=ALerpD1(a[0],b[0],c);d[1]=ALerpD1(a[1],b[1],c);d[2]=ALerpD1(a[2],b[2],c);d[3]=ALerpD1(a[3],b[3],c);return d;} //------------------------------------------------------------------------------------------------------------------------------ A_STATIC retAF2 opALerpOneF2(outAF2 d,inAF2 a,inAF2 b,AF1 c){d[0]=ALerpF1(a[0],b[0],c);d[1]=ALerpF1(a[1],b[1],c);return d;} A_STATIC retAF3 opALerpOneF3(outAF3 d,inAF3 a,inAF3 b,AF1 c){d[0]=ALerpF1(a[0],b[0],c);d[1]=ALerpF1(a[1],b[1],c);d[2]=ALerpF1(a[2],b[2],c);return d;} A_STATIC retAF4 opALerpOneF4(outAF4 d,inAF4 a,inAF4 b,AF1 c){d[0]=ALerpF1(a[0],b[0],c);d[1]=ALerpF1(a[1],b[1],c);d[2]=ALerpF1(a[2],b[2],c);d[3]=ALerpF1(a[3],b[3],c);return d;} //============================================================================================================================== A_STATIC retAD2 opAMaxD2(outAD2 d,inAD2 a,inAD2 b){d[0]=AMaxD1(a[0],b[0]);d[1]=AMaxD1(a[1],b[1]);return d;} A_STATIC retAD3 opAMaxD3(outAD3 d,inAD3 a,inAD3 b){d[0]=AMaxD1(a[0],b[0]);d[1]=AMaxD1(a[1],b[1]);d[2]=AMaxD1(a[2],b[2]);return d;} A_STATIC retAD4 opAMaxD4(outAD4 d,inAD4 a,inAD4 b){d[0]=AMaxD1(a[0],b[0]);d[1]=AMaxD1(a[1],b[1]);d[2]=AMaxD1(a[2],b[2]);d[3]=AMaxD1(a[3],b[3]);return d;} //------------------------------------------------------------------------------------------------------------------------------ A_STATIC retAF2 opAMaxF2(outAF2 d,inAF2 a,inAF2 b){d[0]=AMaxF1(a[0],b[0]);d[1]=AMaxF1(a[1],b[1]);return d;} A_STATIC retAF3 opAMaxF3(outAF3 d,inAF3 a,inAF3 b){d[0]=AMaxF1(a[0],b[0]);d[1]=AMaxF1(a[1],b[1]);d[2]=AMaxF1(a[2],b[2]);return d;} A_STATIC retAF4 opAMaxF4(outAF4 d,inAF4 a,inAF4 b){d[0]=AMaxF1(a[0],b[0]);d[1]=AMaxF1(a[1],b[1]);d[2]=AMaxF1(a[2],b[2]);d[3]=AMaxF1(a[3],b[3]);return d;} //============================================================================================================================== A_STATIC retAD2 opAMinD2(outAD2 d,inAD2 a,inAD2 b){d[0]=AMinD1(a[0],b[0]);d[1]=AMinD1(a[1],b[1]);return d;} A_STATIC retAD3 opAMinD3(outAD3 d,inAD3 a,inAD3 b){d[0]=AMinD1(a[0],b[0]);d[1]=AMinD1(a[1],b[1]);d[2]=AMinD1(a[2],b[2]);return d;} A_STATIC retAD4 opAMinD4(outAD4 d,inAD4 a,inAD4 b){d[0]=AMinD1(a[0],b[0]);d[1]=AMinD1(a[1],b[1]);d[2]=AMinD1(a[2],b[2]);d[3]=AMinD1(a[3],b[3]);return d;} //------------------------------------------------------------------------------------------------------------------------------ A_STATIC retAF2 opAMinF2(outAF2 d,inAF2 a,inAF2 b){d[0]=AMinF1(a[0],b[0]);d[1]=AMinF1(a[1],b[1]);return d;} A_STATIC retAF3 opAMinF3(outAF3 d,inAF3 a,inAF3 b){d[0]=AMinF1(a[0],b[0]);d[1]=AMinF1(a[1],b[1]);d[2]=AMinF1(a[2],b[2]);return d;} A_STATIC retAF4 opAMinF4(outAF4 d,inAF4 a,inAF4 b){d[0]=AMinF1(a[0],b[0]);d[1]=AMinF1(a[1],b[1]);d[2]=AMinF1(a[2],b[2]);d[3]=AMinF1(a[3],b[3]);return d;} //============================================================================================================================== A_STATIC retAD2 opAMulD2(outAD2 d,inAD2 a,inAD2 b){d[0]=a[0]*b[0];d[1]=a[1]*b[1];return d;} A_STATIC retAD3 opAMulD3(outAD3 d,inAD3 a,inAD3 b){d[0]=a[0]*b[0];d[1]=a[1]*b[1];d[2]=a[2]*b[2];return d;} A_STATIC retAD4 opAMulD4(outAD4 d,inAD4 a,inAD4 b){d[0]=a[0]*b[0];d[1]=a[1]*b[1];d[2]=a[2]*b[2];d[3]=a[3]*b[3];return d;} //------------------------------------------------------------------------------------------------------------------------------ A_STATIC retAF2 opAMulF2(outAF2 d,inAF2 a,inAF2 b){d[0]=a[0]*b[0];d[1]=a[1]*b[1];return d;} A_STATIC retAF3 opAMulF3(outAF3 d,inAF3 a,inAF3 b){d[0]=a[0]*b[0];d[1]=a[1]*b[1];d[2]=a[2]*b[2];return d;} A_STATIC retAF4 opAMulF4(outAF4 d,inAF4 a,inAF4 b){d[0]=a[0]*b[0];d[1]=a[1]*b[1];d[2]=a[2]*b[2];d[3]=a[3]*b[3];return d;} //============================================================================================================================== A_STATIC retAD2 opAMulOneD2(outAD2 d,inAD2 a,AD1 b){d[0]=a[0]*b;d[1]=a[1]*b;return d;} A_STATIC retAD3 opAMulOneD3(outAD3 d,inAD3 a,AD1 b){d[0]=a[0]*b;d[1]=a[1]*b;d[2]=a[2]*b;return d;} A_STATIC retAD4 opAMulOneD4(outAD4 d,inAD4 a,AD1 b){d[0]=a[0]*b;d[1]=a[1]*b;d[2]=a[2]*b;d[3]=a[3]*b;return d;} //------------------------------------------------------------------------------------------------------------------------------ A_STATIC retAF2 opAMulOneF2(outAF2 d,inAF2 a,AF1 b){d[0]=a[0]*b;d[1]=a[1]*b;return d;} A_STATIC retAF3 opAMulOneF3(outAF3 d,inAF3 a,AF1 b){d[0]=a[0]*b;d[1]=a[1]*b;d[2]=a[2]*b;return d;} A_STATIC retAF4 opAMulOneF4(outAF4 d,inAF4 a,AF1 b){d[0]=a[0]*b;d[1]=a[1]*b;d[2]=a[2]*b;d[3]=a[3]*b;return d;} //============================================================================================================================== A_STATIC retAD2 opANegD2(outAD2 d,inAD2 a){d[0]=-a[0];d[1]=-a[1];return d;} A_STATIC retAD3 opANegD3(outAD3 d,inAD3 a){d[0]=-a[0];d[1]=-a[1];d[2]=-a[2];return d;} A_STATIC retAD4 opANegD4(outAD4 d,inAD4 a){d[0]=-a[0];d[1]=-a[1];d[2]=-a[2];d[3]=-a[3];return d;} //------------------------------------------------------------------------------------------------------------------------------ A_STATIC retAF2 opANegF2(outAF2 d,inAF2 a){d[0]=-a[0];d[1]=-a[1];return d;} A_STATIC retAF3 opANegF3(outAF3 d,inAF3 a){d[0]=-a[0];d[1]=-a[1];d[2]=-a[2];return d;} A_STATIC retAF4 opANegF4(outAF4 d,inAF4 a){d[0]=-a[0];d[1]=-a[1];d[2]=-a[2];d[3]=-a[3];return d;} //============================================================================================================================== A_STATIC retAD2 opARcpD2(outAD2 d,inAD2 a){d[0]=ARcpD1(a[0]);d[1]=ARcpD1(a[1]);return d;} A_STATIC retAD3 opARcpD3(outAD3 d,inAD3 a){d[0]=ARcpD1(a[0]);d[1]=ARcpD1(a[1]);d[2]=ARcpD1(a[2]);return d;} A_STATIC retAD4 opARcpD4(outAD4 d,inAD4 a){d[0]=ARcpD1(a[0]);d[1]=ARcpD1(a[1]);d[2]=ARcpD1(a[2]);d[3]=ARcpD1(a[3]);return d;} //------------------------------------------------------------------------------------------------------------------------------ A_STATIC retAF2 opARcpF2(outAF2 d,inAF2 a){d[0]=ARcpF1(a[0]);d[1]=ARcpF1(a[1]);return d;} A_STATIC retAF3 opARcpF3(outAF3 d,inAF3 a){d[0]=ARcpF1(a[0]);d[1]=ARcpF1(a[1]);d[2]=ARcpF1(a[2]);return d;} A_STATIC retAF4 opARcpF4(outAF4 d,inAF4 a){d[0]=ARcpF1(a[0]);d[1]=ARcpF1(a[1]);d[2]=ARcpF1(a[2]);d[3]=ARcpF1(a[3]);return d;} //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // HALF FLOAT PACKING //============================================================================================================================== // Convert float to half (in lower 16-bits of output). // Same fast technique as documented here: ftp://ftp.fox-toolkit.org/pub/fasthalffloatconversion.pdf // Supports denormals. // Conversion rules are to make computations possibly "safer" on the GPU, // -INF & -NaN -> -65504 // +INF & +NaN -> +65504 A_STATIC AU1 AU1_AH1_AF1(AF1 f){ static AW1 base[512]={ 0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000, 0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000, 0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000, 0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000, 0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000, 0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000, 0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0001,0x0002,0x0004,0x0008,0x0010,0x0020,0x0040,0x0080,0x0100, 0x0200,0x0400,0x0800,0x0c00,0x1000,0x1400,0x1800,0x1c00,0x2000,0x2400,0x2800,0x2c00,0x3000,0x3400,0x3800,0x3c00, 0x4000,0x4400,0x4800,0x4c00,0x5000,0x5400,0x5800,0x5c00,0x6000,0x6400,0x6800,0x6c00,0x7000,0x7400,0x7800,0x7bff, 0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff, 0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff, 0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff, 0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff, 0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff, 0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff, 0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff, 0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000, 0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000, 0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000, 0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000, 0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000, 0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000, 0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8001,0x8002,0x8004,0x8008,0x8010,0x8020,0x8040,0x8080,0x8100, 0x8200,0x8400,0x8800,0x8c00,0x9000,0x9400,0x9800,0x9c00,0xa000,0xa400,0xa800,0xac00,0xb000,0xb400,0xb800,0xbc00, 0xc000,0xc400,0xc800,0xcc00,0xd000,0xd400,0xd800,0xdc00,0xe000,0xe400,0xe800,0xec00,0xf000,0xf400,0xf800,0xfbff, 0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff, 0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff, 0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff, 0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff, 0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff, 0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff, 0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff}; static AB1 shift[512]={ 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x17,0x16,0x15,0x14,0x13,0x12,0x11,0x10,0x0f, 0x0e,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d, 0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x18, 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x17,0x16,0x15,0x14,0x13,0x12,0x11,0x10,0x0f, 0x0e,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d, 0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x18, 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18}; union{AF1 f;AU1 u;}bits;bits.f=f;AU1 u=bits.u;AU1 i=u>>23;return (AU1)(base[i])+((u&0x7fffff)>>shift[i]);} //------------------------------------------------------------------------------------------------------------------------------ // Used to output packed constant. A_STATIC AU1 AU1_AH2_AF2(inAF2 a){return AU1_AH1_AF1(a[0])+(AU1_AH1_AF1(a[1])<<16);} #endif //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // // // GLSL // // //============================================================================================================================== #if defined(A_GLSL) && defined(A_GPU) #ifndef A_SKIP_EXT #ifdef A_HALF #extension GL_EXT_shader_16bit_storage:require #extension GL_EXT_shader_explicit_arithmetic_types:require #endif //------------------------------------------------------------------------------------------------------------------------------ #ifdef A_LONG #extension GL_ARB_gpu_shader_int64:require #extension GL_NV_shader_atomic_int64:require #endif //------------------------------------------------------------------------------------------------------------------------------ #ifdef A_WAVE #extension GL_KHR_shader_subgroup_arithmetic:require #extension GL_KHR_shader_subgroup_ballot:require #extension GL_KHR_shader_subgroup_quad:require #extension GL_KHR_shader_subgroup_shuffle:require #endif #endif //============================================================================================================================== #define AP1 bool #define AP2 bvec2 #define AP3 bvec3 #define AP4 bvec4 //------------------------------------------------------------------------------------------------------------------------------ #define AF1 float #define AF2 vec2 #define AF3 vec3 #define AF4 vec4 //------------------------------------------------------------------------------------------------------------------------------ #define AU1 uint #define AU2 uvec2 #define AU3 uvec3 #define AU4 uvec4 //------------------------------------------------------------------------------------------------------------------------------ #define ASU1 int #define ASU2 ivec2 #define ASU3 ivec3 #define ASU4 ivec4 //============================================================================================================================== #define AF1_AU1(x) uintBitsToFloat(AU1(x)) #define AF2_AU2(x) uintBitsToFloat(AU2(x)) #define AF3_AU3(x) uintBitsToFloat(AU3(x)) #define AF4_AU4(x) uintBitsToFloat(AU4(x)) //------------------------------------------------------------------------------------------------------------------------------ #define AU1_AF1(x) floatBitsToUint(AF1(x)) #define AU2_AF2(x) floatBitsToUint(AF2(x)) #define AU3_AF3(x) floatBitsToUint(AF3(x)) #define AU4_AF4(x) floatBitsToUint(AF4(x)) //------------------------------------------------------------------------------------------------------------------------------ AU1 AU1_AH1_AF1_x(AF1 a){return packHalf2x16(AF2(a,0.0));} #define AU1_AH1_AF1(a) AU1_AH1_AF1_x(AF1(a)) //------------------------------------------------------------------------------------------------------------------------------ #define AU1_AH2_AF2 packHalf2x16 #define AU1_AW2Unorm_AF2 packUnorm2x16 #define AU1_AB4Unorm_AF4 packUnorm4x8 //------------------------------------------------------------------------------------------------------------------------------ #define AF2_AH2_AU1 unpackHalf2x16 #define AF2_AW2Unorm_AU1 unpackUnorm2x16 #define AF4_AB4Unorm_AU1 unpackUnorm4x8 //============================================================================================================================== AF1 AF1_x(AF1 a){return AF1(a);} AF2 AF2_x(AF1 a){return AF2(a,a);} AF3 AF3_x(AF1 a){return AF3(a,a,a);} AF4 AF4_x(AF1 a){return AF4(a,a,a,a);} #define AF1_(a) AF1_x(AF1(a)) #define AF2_(a) AF2_x(AF1(a)) #define AF3_(a) AF3_x(AF1(a)) #define AF4_(a) AF4_x(AF1(a)) //------------------------------------------------------------------------------------------------------------------------------ AU1 AU1_x(AU1 a){return AU1(a);} AU2 AU2_x(AU1 a){return AU2(a,a);} AU3 AU3_x(AU1 a){return AU3(a,a,a);} AU4 AU4_x(AU1 a){return AU4(a,a,a,a);} #define AU1_(a) AU1_x(AU1(a)) #define AU2_(a) AU2_x(AU1(a)) #define AU3_(a) AU3_x(AU1(a)) #define AU4_(a) AU4_x(AU1(a)) //============================================================================================================================== AU1 AAbsSU1(AU1 a){return AU1(abs(ASU1(a)));} AU2 AAbsSU2(AU2 a){return AU2(abs(ASU2(a)));} AU3 AAbsSU3(AU3 a){return AU3(abs(ASU3(a)));} AU4 AAbsSU4(AU4 a){return AU4(abs(ASU4(a)));} //------------------------------------------------------------------------------------------------------------------------------ AU1 ABfe(AU1 src,AU1 off,AU1 bits){return bitfieldExtract(src,ASU1(off),ASU1(bits));} AU1 ABfi(AU1 src,AU1 ins,AU1 mask){return (ins&mask)|(src&(~mask));} // Proxy for V_BFI_B32 where the 'mask' is set as 'bits', 'mask=(1<>ASU1(b));} AU2 AShrSU2(AU2 a,AU2 b){return AU2(ASU2(a)>>ASU2(b));} AU3 AShrSU3(AU3 a,AU3 b){return AU3(ASU3(a)>>ASU3(b));} AU4 AShrSU4(AU4 a,AU4 b){return AU4(ASU4(a)>>ASU4(b));} //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // GLSL BYTE //============================================================================================================================== #ifdef A_BYTE #define AB1 uint8_t #define AB2 u8vec2 #define AB3 u8vec3 #define AB4 u8vec4 //------------------------------------------------------------------------------------------------------------------------------ #define ASB1 int8_t #define ASB2 i8vec2 #define ASB3 i8vec3 #define ASB4 i8vec4 //------------------------------------------------------------------------------------------------------------------------------ AB1 AB1_x(AB1 a){return AB1(a);} AB2 AB2_x(AB1 a){return AB2(a,a);} AB3 AB3_x(AB1 a){return AB3(a,a,a);} AB4 AB4_x(AB1 a){return AB4(a,a,a,a);} #define AB1_(a) AB1_x(AB1(a)) #define AB2_(a) AB2_x(AB1(a)) #define AB3_(a) AB3_x(AB1(a)) #define AB4_(a) AB4_x(AB1(a)) #endif //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // GLSL HALF //============================================================================================================================== #ifdef A_HALF #define AH1 float16_t #define AH2 f16vec2 #define AH3 f16vec3 #define AH4 f16vec4 //------------------------------------------------------------------------------------------------------------------------------ #define AW1 uint16_t #define AW2 u16vec2 #define AW3 u16vec3 #define AW4 u16vec4 //------------------------------------------------------------------------------------------------------------------------------ #define ASW1 int16_t #define ASW2 i16vec2 #define ASW3 i16vec3 #define ASW4 i16vec4 //============================================================================================================================== #define AH2_AU1(x) unpackFloat2x16(AU1(x)) AH4 AH4_AU2_x(AU2 x){return AH4(unpackFloat2x16(x.x),unpackFloat2x16(x.y));} #define AH4_AU2(x) AH4_AU2_x(AU2(x)) #define AW2_AU1(x) unpackUint2x16(AU1(x)) #define AW4_AU2(x) unpackUint4x16(pack64(AU2(x))) //------------------------------------------------------------------------------------------------------------------------------ #define AU1_AH2(x) packFloat2x16(AH2(x)) AU2 AU2_AH4_x(AH4 x){return AU2(packFloat2x16(x.xy),packFloat2x16(x.zw));} #define AU2_AH4(x) AU2_AH4_x(AH4(x)) #define AU1_AW2(x) packUint2x16(AW2(x)) #define AU2_AW4(x) unpack32(packUint4x16(AW4(x))) //============================================================================================================================== #define AW1_AH1(x) halfBitsToUint16(AH1(x)) #define AW2_AH2(x) halfBitsToUint16(AH2(x)) #define AW3_AH3(x) halfBitsToUint16(AH3(x)) #define AW4_AH4(x) halfBitsToUint16(AH4(x)) //------------------------------------------------------------------------------------------------------------------------------ #define AH1_AW1(x) uint16BitsToHalf(AW1(x)) #define AH2_AW2(x) uint16BitsToHalf(AW2(x)) #define AH3_AW3(x) uint16BitsToHalf(AW3(x)) #define AH4_AW4(x) uint16BitsToHalf(AW4(x)) //============================================================================================================================== AH1 AH1_x(AH1 a){return AH1(a);} AH2 AH2_x(AH1 a){return AH2(a,a);} AH3 AH3_x(AH1 a){return AH3(a,a,a);} AH4 AH4_x(AH1 a){return AH4(a,a,a,a);} #define AH1_(a) AH1_x(AH1(a)) #define AH2_(a) AH2_x(AH1(a)) #define AH3_(a) AH3_x(AH1(a)) #define AH4_(a) AH4_x(AH1(a)) //------------------------------------------------------------------------------------------------------------------------------ AW1 AW1_x(AW1 a){return AW1(a);} AW2 AW2_x(AW1 a){return AW2(a,a);} AW3 AW3_x(AW1 a){return AW3(a,a,a);} AW4 AW4_x(AW1 a){return AW4(a,a,a,a);} #define AW1_(a) AW1_x(AW1(a)) #define AW2_(a) AW2_x(AW1(a)) #define AW3_(a) AW3_x(AW1(a)) #define AW4_(a) AW4_x(AW1(a)) //============================================================================================================================== AW1 AAbsSW1(AW1 a){return AW1(abs(ASW1(a)));} AW2 AAbsSW2(AW2 a){return AW2(abs(ASW2(a)));} AW3 AAbsSW3(AW3 a){return AW3(abs(ASW3(a)));} AW4 AAbsSW4(AW4 a){return AW4(abs(ASW4(a)));} //------------------------------------------------------------------------------------------------------------------------------ AH1 AClampH1(AH1 x,AH1 n,AH1 m){return clamp(x,n,m);} AH2 AClampH2(AH2 x,AH2 n,AH2 m){return clamp(x,n,m);} AH3 AClampH3(AH3 x,AH3 n,AH3 m){return clamp(x,n,m);} AH4 AClampH4(AH4 x,AH4 n,AH4 m){return clamp(x,n,m);} //------------------------------------------------------------------------------------------------------------------------------ AH1 AFractH1(AH1 x){return fract(x);} AH2 AFractH2(AH2 x){return fract(x);} AH3 AFractH3(AH3 x){return fract(x);} AH4 AFractH4(AH4 x){return fract(x);} //------------------------------------------------------------------------------------------------------------------------------ AH1 ALerpH1(AH1 x,AH1 y,AH1 a){return mix(x,y,a);} AH2 ALerpH2(AH2 x,AH2 y,AH2 a){return mix(x,y,a);} AH3 ALerpH3(AH3 x,AH3 y,AH3 a){return mix(x,y,a);} AH4 ALerpH4(AH4 x,AH4 y,AH4 a){return mix(x,y,a);} //------------------------------------------------------------------------------------------------------------------------------ // No packed version of max3. AH1 AMax3H1(AH1 x,AH1 y,AH1 z){return max(x,max(y,z));} AH2 AMax3H2(AH2 x,AH2 y,AH2 z){return max(x,max(y,z));} AH3 AMax3H3(AH3 x,AH3 y,AH3 z){return max(x,max(y,z));} AH4 AMax3H4(AH4 x,AH4 y,AH4 z){return max(x,max(y,z));} //------------------------------------------------------------------------------------------------------------------------------ AW1 AMaxSW1(AW1 a,AW1 b){return AW1(max(ASU1(a),ASU1(b)));} AW2 AMaxSW2(AW2 a,AW2 b){return AW2(max(ASU2(a),ASU2(b)));} AW3 AMaxSW3(AW3 a,AW3 b){return AW3(max(ASU3(a),ASU3(b)));} AW4 AMaxSW4(AW4 a,AW4 b){return AW4(max(ASU4(a),ASU4(b)));} //------------------------------------------------------------------------------------------------------------------------------ // No packed version of min3. AH1 AMin3H1(AH1 x,AH1 y,AH1 z){return min(x,min(y,z));} AH2 AMin3H2(AH2 x,AH2 y,AH2 z){return min(x,min(y,z));} AH3 AMin3H3(AH3 x,AH3 y,AH3 z){return min(x,min(y,z));} AH4 AMin3H4(AH4 x,AH4 y,AH4 z){return min(x,min(y,z));} //------------------------------------------------------------------------------------------------------------------------------ AW1 AMinSW1(AW1 a,AW1 b){return AW1(min(ASU1(a),ASU1(b)));} AW2 AMinSW2(AW2 a,AW2 b){return AW2(min(ASU2(a),ASU2(b)));} AW3 AMinSW3(AW3 a,AW3 b){return AW3(min(ASU3(a),ASU3(b)));} AW4 AMinSW4(AW4 a,AW4 b){return AW4(min(ASU4(a),ASU4(b)));} //------------------------------------------------------------------------------------------------------------------------------ AH1 ARcpH1(AH1 x){return AH1_(1.0)/x;} AH2 ARcpH2(AH2 x){return AH2_(1.0)/x;} AH3 ARcpH3(AH3 x){return AH3_(1.0)/x;} AH4 ARcpH4(AH4 x){return AH4_(1.0)/x;} //------------------------------------------------------------------------------------------------------------------------------ AH1 ARsqH1(AH1 x){return AH1_(1.0)/sqrt(x);} AH2 ARsqH2(AH2 x){return AH2_(1.0)/sqrt(x);} AH3 ARsqH3(AH3 x){return AH3_(1.0)/sqrt(x);} AH4 ARsqH4(AH4 x){return AH4_(1.0)/sqrt(x);} //------------------------------------------------------------------------------------------------------------------------------ AH1 ASatH1(AH1 x){return clamp(x,AH1_(0.0),AH1_(1.0));} AH2 ASatH2(AH2 x){return clamp(x,AH2_(0.0),AH2_(1.0));} AH3 ASatH3(AH3 x){return clamp(x,AH3_(0.0),AH3_(1.0));} AH4 ASatH4(AH4 x){return clamp(x,AH4_(0.0),AH4_(1.0));} //------------------------------------------------------------------------------------------------------------------------------ AW1 AShrSW1(AW1 a,AW1 b){return AW1(ASW1(a)>>ASW1(b));} AW2 AShrSW2(AW2 a,AW2 b){return AW2(ASW2(a)>>ASW2(b));} AW3 AShrSW3(AW3 a,AW3 b){return AW3(ASW3(a)>>ASW3(b));} AW4 AShrSW4(AW4 a,AW4 b){return AW4(ASW4(a)>>ASW4(b));} #endif //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // GLSL DOUBLE //============================================================================================================================== #ifdef A_DUBL #define AD1 double #define AD2 dvec2 #define AD3 dvec3 #define AD4 dvec4 //------------------------------------------------------------------------------------------------------------------------------ AD1 AD1_x(AD1 a){return AD1(a);} AD2 AD2_x(AD1 a){return AD2(a,a);} AD3 AD3_x(AD1 a){return AD3(a,a,a);} AD4 AD4_x(AD1 a){return AD4(a,a,a,a);} #define AD1_(a) AD1_x(AD1(a)) #define AD2_(a) AD2_x(AD1(a)) #define AD3_(a) AD3_x(AD1(a)) #define AD4_(a) AD4_x(AD1(a)) //============================================================================================================================== AD1 AFractD1(AD1 x){return fract(x);} AD2 AFractD2(AD2 x){return fract(x);} AD3 AFractD3(AD3 x){return fract(x);} AD4 AFractD4(AD4 x){return fract(x);} //------------------------------------------------------------------------------------------------------------------------------ AD1 ALerpD1(AD1 x,AD1 y,AD1 a){return mix(x,y,a);} AD2 ALerpD2(AD2 x,AD2 y,AD2 a){return mix(x,y,a);} AD3 ALerpD3(AD3 x,AD3 y,AD3 a){return mix(x,y,a);} AD4 ALerpD4(AD4 x,AD4 y,AD4 a){return mix(x,y,a);} //------------------------------------------------------------------------------------------------------------------------------ AD1 ARcpD1(AD1 x){return AD1_(1.0)/x;} AD2 ARcpD2(AD2 x){return AD2_(1.0)/x;} AD3 ARcpD3(AD3 x){return AD3_(1.0)/x;} AD4 ARcpD4(AD4 x){return AD4_(1.0)/x;} //------------------------------------------------------------------------------------------------------------------------------ AD1 ARsqD1(AD1 x){return AD1_(1.0)/sqrt(x);} AD2 ARsqD2(AD2 x){return AD2_(1.0)/sqrt(x);} AD3 ARsqD3(AD3 x){return AD3_(1.0)/sqrt(x);} AD4 ARsqD4(AD4 x){return AD4_(1.0)/sqrt(x);} //------------------------------------------------------------------------------------------------------------------------------ AD1 ASatD1(AD1 x){return clamp(x,AD1_(0.0),AD1_(1.0));} AD2 ASatD2(AD2 x){return clamp(x,AD2_(0.0),AD2_(1.0));} AD3 ASatD3(AD3 x){return clamp(x,AD3_(0.0),AD3_(1.0));} AD4 ASatD4(AD4 x){return clamp(x,AD4_(0.0),AD4_(1.0));} #endif //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // GLSL LONG //============================================================================================================================== #ifdef A_LONG #define AL1 uint64_t #define AL2 u64vec2 #define AL3 u64vec3 #define AL4 u64vec4 //------------------------------------------------------------------------------------------------------------------------------ #define ASL1 int64_t #define ASL2 i64vec2 #define ASL3 i64vec3 #define ASL4 i64vec4 //------------------------------------------------------------------------------------------------------------------------------ #define AL1_AU2(x) packUint2x32(AU2(x)) #define AU2_AL1(x) unpackUint2x32(AL1(x)) //------------------------------------------------------------------------------------------------------------------------------ AL1 AL1_x(AL1 a){return AL1(a);} AL2 AL2_x(AL1 a){return AL2(a,a);} AL3 AL3_x(AL1 a){return AL3(a,a,a);} AL4 AL4_x(AL1 a){return AL4(a,a,a,a);} #define AL1_(a) AL1_x(AL1(a)) #define AL2_(a) AL2_x(AL1(a)) #define AL3_(a) AL3_x(AL1(a)) #define AL4_(a) AL4_x(AL1(a)) //============================================================================================================================== AL1 AAbsSL1(AL1 a){return AL1(abs(ASL1(a)));} AL2 AAbsSL2(AL2 a){return AL2(abs(ASL2(a)));} AL3 AAbsSL3(AL3 a){return AL3(abs(ASL3(a)));} AL4 AAbsSL4(AL4 a){return AL4(abs(ASL4(a)));} //------------------------------------------------------------------------------------------------------------------------------ AL1 AMaxSL1(AL1 a,AL1 b){return AL1(max(ASU1(a),ASU1(b)));} AL2 AMaxSL2(AL2 a,AL2 b){return AL2(max(ASU2(a),ASU2(b)));} AL3 AMaxSL3(AL3 a,AL3 b){return AL3(max(ASU3(a),ASU3(b)));} AL4 AMaxSL4(AL4 a,AL4 b){return AL4(max(ASU4(a),ASU4(b)));} //------------------------------------------------------------------------------------------------------------------------------ AL1 AMinSL1(AL1 a,AL1 b){return AL1(min(ASU1(a),ASU1(b)));} AL2 AMinSL2(AL2 a,AL2 b){return AL2(min(ASU2(a),ASU2(b)));} AL3 AMinSL3(AL3 a,AL3 b){return AL3(min(ASU3(a),ASU3(b)));} AL4 AMinSL4(AL4 a,AL4 b){return AL4(min(ASU4(a),ASU4(b)));} #endif //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // WAVE OPERATIONS //============================================================================================================================== #ifdef A_WAVE // Where 'x' must be a compile time literal. AF1 AWaveXorF1(AF1 v,AU1 x){return subgroupShuffleXor(v,x);} AF2 AWaveXorF2(AF2 v,AU1 x){return subgroupShuffleXor(v,x);} AF3 AWaveXorF3(AF3 v,AU1 x){return subgroupShuffleXor(v,x);} AF4 AWaveXorF4(AF4 v,AU1 x){return subgroupShuffleXor(v,x);} AU1 AWaveXorU1(AU1 v,AU1 x){return subgroupShuffleXor(v,x);} AU2 AWaveXorU2(AU2 v,AU1 x){return subgroupShuffleXor(v,x);} AU3 AWaveXorU3(AU3 v,AU1 x){return subgroupShuffleXor(v,x);} AU4 AWaveXorU4(AU4 v,AU1 x){return subgroupShuffleXor(v,x);} //------------------------------------------------------------------------------------------------------------------------------ #ifdef A_HALF AH2 AWaveXorH2(AH2 v,AU1 x){return AH2_AU1(subgroupShuffleXor(AU1_AH2(v),x));} AH4 AWaveXorH4(AH4 v,AU1 x){return AH4_AU2(subgroupShuffleXor(AU2_AH4(v),x));} AW2 AWaveXorW2(AW2 v,AU1 x){return AW2_AU1(subgroupShuffleXor(AU1_AW2(v),x));} AW4 AWaveXorW4(AW4 v,AU1 x){return AW4_AU2(subgroupShuffleXor(AU2_AW4(v),x));} #endif #endif //============================================================================================================================== #endif //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // // // HLSL // // //============================================================================================================================== #if defined(A_HLSL) && defined(A_GPU) #ifdef A_HLSL_6_2 #define AP1 bool #define AP2 bool2 #define AP3 bool3 #define AP4 bool4 //------------------------------------------------------------------------------------------------------------------------------ #define AF1 float32_t #define AF2 float32_t2 #define AF3 float32_t3 #define AF4 float32_t4 //------------------------------------------------------------------------------------------------------------------------------ #define AU1 uint32_t #define AU2 uint32_t2 #define AU3 uint32_t3 #define AU4 uint32_t4 //------------------------------------------------------------------------------------------------------------------------------ #define ASU1 int32_t #define ASU2 int32_t2 #define ASU3 int32_t3 #define ASU4 int32_t4 #else #define AP1 bool #define AP2 bool2 #define AP3 bool3 #define AP4 bool4 //------------------------------------------------------------------------------------------------------------------------------ #define AF1 float #define AF2 float2 #define AF3 float3 #define AF4 float4 //------------------------------------------------------------------------------------------------------------------------------ #define AU1 uint #define AU2 uint2 #define AU3 uint3 #define AU4 uint4 //------------------------------------------------------------------------------------------------------------------------------ #define ASU1 int #define ASU2 int2 #define ASU3 int3 #define ASU4 int4 #endif //============================================================================================================================== #define AF1_AU1(x) asfloat(AU1(x)) #define AF2_AU2(x) asfloat(AU2(x)) #define AF3_AU3(x) asfloat(AU3(x)) #define AF4_AU4(x) asfloat(AU4(x)) //------------------------------------------------------------------------------------------------------------------------------ #define AU1_AF1(x) asuint(AF1(x)) #define AU2_AF2(x) asuint(AF2(x)) #define AU3_AF3(x) asuint(AF3(x)) #define AU4_AF4(x) asuint(AF4(x)) //------------------------------------------------------------------------------------------------------------------------------ AU1 AU1_AH1_AF1_x(AF1 a){return f32tof16(a);} #define AU1_AH1_AF1(a) AU1_AH1_AF1_x(AF1(a)) //------------------------------------------------------------------------------------------------------------------------------ AU1 AU1_AH2_AF2_x(AF2 a){return f32tof16(a.x)|(f32tof16(a.y)<<16);} #define AU1_AH2_AF2(a) AU1_AH2_AF2_x(AF2(a)) #define AU1_AB4Unorm_AF4(x) D3DCOLORtoUBYTE4(AF4(x)) //------------------------------------------------------------------------------------------------------------------------------ AF2 AF2_AH2_AU1_x(AU1 x){return AF2(f16tof32(x&0xFFFF),f16tof32(x>>16));} #define AF2_AH2_AU1(x) AF2_AH2_AU1_x(AU1(x)) //============================================================================================================================== AF1 AF1_x(AF1 a){return AF1(a);} AF2 AF2_x(AF1 a){return AF2(a,a);} AF3 AF3_x(AF1 a){return AF3(a,a,a);} AF4 AF4_x(AF1 a){return AF4(a,a,a,a);} #define AF1_(a) AF1_x(AF1(a)) #define AF2_(a) AF2_x(AF1(a)) #define AF3_(a) AF3_x(AF1(a)) #define AF4_(a) AF4_x(AF1(a)) //------------------------------------------------------------------------------------------------------------------------------ AU1 AU1_x(AU1 a){return AU1(a);} AU2 AU2_x(AU1 a){return AU2(a,a);} AU3 AU3_x(AU1 a){return AU3(a,a,a);} AU4 AU4_x(AU1 a){return AU4(a,a,a,a);} #define AU1_(a) AU1_x(AU1(a)) #define AU2_(a) AU2_x(AU1(a)) #define AU3_(a) AU3_x(AU1(a)) #define AU4_(a) AU4_x(AU1(a)) //============================================================================================================================== AU1 AAbsSU1(AU1 a){return AU1(abs(ASU1(a)));} AU2 AAbsSU2(AU2 a){return AU2(abs(ASU2(a)));} AU3 AAbsSU3(AU3 a){return AU3(abs(ASU3(a)));} AU4 AAbsSU4(AU4 a){return AU4(abs(ASU4(a)));} //------------------------------------------------------------------------------------------------------------------------------ AU1 ABfe(AU1 src,AU1 off,AU1 bits){AU1 mask=(1u<>off)&mask;} AU1 ABfi(AU1 src,AU1 ins,AU1 mask){return (ins&mask)|(src&(~mask));} AU1 ABfiM(AU1 src,AU1 ins,AU1 bits){AU1 mask=(1u<>ASU1(b));} AU2 AShrSU2(AU2 a,AU2 b){return AU2(ASU2(a)>>ASU2(b));} AU3 AShrSU3(AU3 a,AU3 b){return AU3(ASU3(a)>>ASU3(b));} AU4 AShrSU4(AU4 a,AU4 b){return AU4(ASU4(a)>>ASU4(b));} //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // HLSL BYTE //============================================================================================================================== #ifdef A_BYTE #endif //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // HLSL HALF //============================================================================================================================== #ifdef A_HALF #ifdef A_HLSL_6_2 #define AH1 float16_t #define AH2 float16_t2 #define AH3 float16_t3 #define AH4 float16_t4 //------------------------------------------------------------------------------------------------------------------------------ #define AW1 uint16_t #define AW2 uint16_t2 #define AW3 uint16_t3 #define AW4 uint16_t4 //------------------------------------------------------------------------------------------------------------------------------ #define ASW1 int16_t #define ASW2 int16_t2 #define ASW3 int16_t3 #define ASW4 int16_t4 #else #define AH1 min16float #define AH2 min16float2 #define AH3 min16float3 #define AH4 min16float4 //------------------------------------------------------------------------------------------------------------------------------ #define AW1 min16uint #define AW2 min16uint2 #define AW3 min16uint3 #define AW4 min16uint4 //------------------------------------------------------------------------------------------------------------------------------ #define ASW1 min16int #define ASW2 min16int2 #define ASW3 min16int3 #define ASW4 min16int4 #endif //============================================================================================================================== // Need to use manual unpack to get optimal execution (don't use packed types in buffers directly). // Unpack requires this pattern: https://gpuopen.com/first-steps-implementing-fp16/ AH2 AH2_AU1_x(AU1 x){AF2 t=f16tof32(AU2(x&0xFFFF,x>>16));return AH2(t);} AH4 AH4_AU2_x(AU2 x){return AH4(AH2_AU1_x(x.x),AH2_AU1_x(x.y));} AW2 AW2_AU1_x(AU1 x){AU2 t=AU2(x&0xFFFF,x>>16);return AW2(t);} AW4 AW4_AU2_x(AU2 x){return AW4(AW2_AU1_x(x.x),AW2_AU1_x(x.y));} #define AH2_AU1(x) AH2_AU1_x(AU1(x)) #define AH4_AU2(x) AH4_AU2_x(AU2(x)) #define AW2_AU1(x) AW2_AU1_x(AU1(x)) #define AW4_AU2(x) AW4_AU2_x(AU2(x)) //------------------------------------------------------------------------------------------------------------------------------ AU1 AU1_AH2_x(AH2 x){return f32tof16(x.x)+(f32tof16(x.y)<<16);} AU2 AU2_AH4_x(AH4 x){return AU2(AU1_AH2_x(x.xy),AU1_AH2_x(x.zw));} AU1 AU1_AW2_x(AW2 x){return AU1(x.x)+(AU1(x.y)<<16);} AU2 AU2_AW4_x(AW4 x){return AU2(AU1_AW2_x(x.xy),AU1_AW2_x(x.zw));} #define AU1_AH2(x) AU1_AH2_x(AH2(x)) #define AU2_AH4(x) AU2_AH4_x(AH4(x)) #define AU1_AW2(x) AU1_AW2_x(AW2(x)) #define AU2_AW4(x) AU2_AW4_x(AW4(x)) //============================================================================================================================== #if defined(A_HLSL_6_2) && !defined(A_NO_16_BIT_CAST) #define AW1_AH1(x) asuint16(x) #define AW2_AH2(x) asuint16(x) #define AW3_AH3(x) asuint16(x) #define AW4_AH4(x) asuint16(x) #else #define AW1_AH1(a) AW1(f32tof16(AF1(a))) #define AW2_AH2(a) AW2(AW1_AH1((a).x),AW1_AH1((a).y)) #define AW3_AH3(a) AW3(AW1_AH1((a).x),AW1_AH1((a).y),AW1_AH1((a).z)) #define AW4_AH4(a) AW4(AW1_AH1((a).x),AW1_AH1((a).y),AW1_AH1((a).z),AW1_AH1((a).w)) #endif //------------------------------------------------------------------------------------------------------------------------------ #if defined(A_HLSL_6_2) && !defined(A_NO_16_BIT_CAST) #define AH1_AW1(x) asfloat16(x) #define AH2_AW2(x) asfloat16(x) #define AH3_AW3(x) asfloat16(x) #define AH4_AW4(x) asfloat16(x) #else #define AH1_AW1(a) AH1(f16tof32(AU1(a))) #define AH2_AW2(a) AH2(AH1_AW1((a).x),AH1_AW1((a).y)) #define AH3_AW3(a) AH3(AH1_AW1((a).x),AH1_AW1((a).y),AH1_AW1((a).z)) #define AH4_AW4(a) AH4(AH1_AW1((a).x),AH1_AW1((a).y),AH1_AW1((a).z),AH1_AW1((a).w)) #endif //============================================================================================================================== AH1 AH1_x(AH1 a){return AH1(a);} AH2 AH2_x(AH1 a){return AH2(a,a);} AH3 AH3_x(AH1 a){return AH3(a,a,a);} AH4 AH4_x(AH1 a){return AH4(a,a,a,a);} #define AH1_(a) AH1_x(AH1(a)) #define AH2_(a) AH2_x(AH1(a)) #define AH3_(a) AH3_x(AH1(a)) #define AH4_(a) AH4_x(AH1(a)) //------------------------------------------------------------------------------------------------------------------------------ AW1 AW1_x(AW1 a){return AW1(a);} AW2 AW2_x(AW1 a){return AW2(a,a);} AW3 AW3_x(AW1 a){return AW3(a,a,a);} AW4 AW4_x(AW1 a){return AW4(a,a,a,a);} #define AW1_(a) AW1_x(AW1(a)) #define AW2_(a) AW2_x(AW1(a)) #define AW3_(a) AW3_x(AW1(a)) #define AW4_(a) AW4_x(AW1(a)) //============================================================================================================================== AW1 AAbsSW1(AW1 a){return AW1(abs(ASW1(a)));} AW2 AAbsSW2(AW2 a){return AW2(abs(ASW2(a)));} AW3 AAbsSW3(AW3 a){return AW3(abs(ASW3(a)));} AW4 AAbsSW4(AW4 a){return AW4(abs(ASW4(a)));} //------------------------------------------------------------------------------------------------------------------------------ AH1 AClampH1(AH1 x,AH1 n,AH1 m){return max(n,min(x,m));} AH2 AClampH2(AH2 x,AH2 n,AH2 m){return max(n,min(x,m));} AH3 AClampH3(AH3 x,AH3 n,AH3 m){return max(n,min(x,m));} AH4 AClampH4(AH4 x,AH4 n,AH4 m){return max(n,min(x,m));} //------------------------------------------------------------------------------------------------------------------------------ // V_FRACT_F16 (note DX frac() is different). AH1 AFractH1(AH1 x){return x-floor(x);} AH2 AFractH2(AH2 x){return x-floor(x);} AH3 AFractH3(AH3 x){return x-floor(x);} AH4 AFractH4(AH4 x){return x-floor(x);} //------------------------------------------------------------------------------------------------------------------------------ AH1 ALerpH1(AH1 x,AH1 y,AH1 a){return lerp(x,y,a);} AH2 ALerpH2(AH2 x,AH2 y,AH2 a){return lerp(x,y,a);} AH3 ALerpH3(AH3 x,AH3 y,AH3 a){return lerp(x,y,a);} AH4 ALerpH4(AH4 x,AH4 y,AH4 a){return lerp(x,y,a);} //------------------------------------------------------------------------------------------------------------------------------ AH1 AMax3H1(AH1 x,AH1 y,AH1 z){return max(x,max(y,z));} AH2 AMax3H2(AH2 x,AH2 y,AH2 z){return max(x,max(y,z));} AH3 AMax3H3(AH3 x,AH3 y,AH3 z){return max(x,max(y,z));} AH4 AMax3H4(AH4 x,AH4 y,AH4 z){return max(x,max(y,z));} //------------------------------------------------------------------------------------------------------------------------------ AW1 AMaxSW1(AW1 a,AW1 b){return AW1(max(ASU1(a),ASU1(b)));} AW2 AMaxSW2(AW2 a,AW2 b){return AW2(max(ASU2(a),ASU2(b)));} AW3 AMaxSW3(AW3 a,AW3 b){return AW3(max(ASU3(a),ASU3(b)));} AW4 AMaxSW4(AW4 a,AW4 b){return AW4(max(ASU4(a),ASU4(b)));} //------------------------------------------------------------------------------------------------------------------------------ AH1 AMin3H1(AH1 x,AH1 y,AH1 z){return min(x,min(y,z));} AH2 AMin3H2(AH2 x,AH2 y,AH2 z){return min(x,min(y,z));} AH3 AMin3H3(AH3 x,AH3 y,AH3 z){return min(x,min(y,z));} AH4 AMin3H4(AH4 x,AH4 y,AH4 z){return min(x,min(y,z));} //------------------------------------------------------------------------------------------------------------------------------ AW1 AMinSW1(AW1 a,AW1 b){return AW1(min(ASU1(a),ASU1(b)));} AW2 AMinSW2(AW2 a,AW2 b){return AW2(min(ASU2(a),ASU2(b)));} AW3 AMinSW3(AW3 a,AW3 b){return AW3(min(ASU3(a),ASU3(b)));} AW4 AMinSW4(AW4 a,AW4 b){return AW4(min(ASU4(a),ASU4(b)));} //------------------------------------------------------------------------------------------------------------------------------ AH1 ARcpH1(AH1 x){return rcp(x);} AH2 ARcpH2(AH2 x){return rcp(x);} AH3 ARcpH3(AH3 x){return rcp(x);} AH4 ARcpH4(AH4 x){return rcp(x);} //------------------------------------------------------------------------------------------------------------------------------ AH1 ARsqH1(AH1 x){return rsqrt(x);} AH2 ARsqH2(AH2 x){return rsqrt(x);} AH3 ARsqH3(AH3 x){return rsqrt(x);} AH4 ARsqH4(AH4 x){return rsqrt(x);} //------------------------------------------------------------------------------------------------------------------------------ AH1 ASatH1(AH1 x){return saturate(x);} AH2 ASatH2(AH2 x){return saturate(x);} AH3 ASatH3(AH3 x){return saturate(x);} AH4 ASatH4(AH4 x){return saturate(x);} //------------------------------------------------------------------------------------------------------------------------------ AW1 AShrSW1(AW1 a,AW1 b){return AW1(ASW1(a)>>ASW1(b));} AW2 AShrSW2(AW2 a,AW2 b){return AW2(ASW2(a)>>ASW2(b));} AW3 AShrSW3(AW3 a,AW3 b){return AW3(ASW3(a)>>ASW3(b));} AW4 AShrSW4(AW4 a,AW4 b){return AW4(ASW4(a)>>ASW4(b));} #endif //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // HLSL DOUBLE //============================================================================================================================== #ifdef A_DUBL #ifdef A_HLSL_6_2 #define AD1 float64_t #define AD2 float64_t2 #define AD3 float64_t3 #define AD4 float64_t4 #else #define AD1 double #define AD2 double2 #define AD3 double3 #define AD4 double4 #endif //------------------------------------------------------------------------------------------------------------------------------ AD1 AD1_x(AD1 a){return AD1(a);} AD2 AD2_x(AD1 a){return AD2(a,a);} AD3 AD3_x(AD1 a){return AD3(a,a,a);} AD4 AD4_x(AD1 a){return AD4(a,a,a,a);} #define AD1_(a) AD1_x(AD1(a)) #define AD2_(a) AD2_x(AD1(a)) #define AD3_(a) AD3_x(AD1(a)) #define AD4_(a) AD4_x(AD1(a)) //============================================================================================================================== AD1 AFractD1(AD1 a){return a-floor(a);} AD2 AFractD2(AD2 a){return a-floor(a);} AD3 AFractD3(AD3 a){return a-floor(a);} AD4 AFractD4(AD4 a){return a-floor(a);} //------------------------------------------------------------------------------------------------------------------------------ AD1 ALerpD1(AD1 x,AD1 y,AD1 a){return lerp(x,y,a);} AD2 ALerpD2(AD2 x,AD2 y,AD2 a){return lerp(x,y,a);} AD3 ALerpD3(AD3 x,AD3 y,AD3 a){return lerp(x,y,a);} AD4 ALerpD4(AD4 x,AD4 y,AD4 a){return lerp(x,y,a);} //------------------------------------------------------------------------------------------------------------------------------ AD1 ARcpD1(AD1 x){return rcp(x);} AD2 ARcpD2(AD2 x){return rcp(x);} AD3 ARcpD3(AD3 x){return rcp(x);} AD4 ARcpD4(AD4 x){return rcp(x);} //------------------------------------------------------------------------------------------------------------------------------ AD1 ARsqD1(AD1 x){return rsqrt(x);} AD2 ARsqD2(AD2 x){return rsqrt(x);} AD3 ARsqD3(AD3 x){return rsqrt(x);} AD4 ARsqD4(AD4 x){return rsqrt(x);} //------------------------------------------------------------------------------------------------------------------------------ AD1 ASatD1(AD1 x){return saturate(x);} AD2 ASatD2(AD2 x){return saturate(x);} AD3 ASatD3(AD3 x){return saturate(x);} AD4 ASatD4(AD4 x){return saturate(x);} #endif //============================================================================================================================== // HLSL WAVE //============================================================================================================================== #ifdef A_WAVE // Where 'x' must be a compile time literal. AF1 AWaveXorF1(AF1 v,AU1 x){return WaveReadLaneAt(v,WaveGetLaneIndex()^x);} AF2 AWaveXorF2(AF2 v,AU1 x){return WaveReadLaneAt(v,WaveGetLaneIndex()^x);} AF3 AWaveXorF3(AF3 v,AU1 x){return WaveReadLaneAt(v,WaveGetLaneIndex()^x);} AF4 AWaveXorF4(AF4 v,AU1 x){return WaveReadLaneAt(v,WaveGetLaneIndex()^x);} AU1 AWaveXorU1(AU1 v,AU1 x){return WaveReadLaneAt(v,WaveGetLaneIndex()^x);} AU2 AWaveXorU1(AU2 v,AU1 x){return WaveReadLaneAt(v,WaveGetLaneIndex()^x);} AU3 AWaveXorU1(AU3 v,AU1 x){return WaveReadLaneAt(v,WaveGetLaneIndex()^x);} AU4 AWaveXorU1(AU4 v,AU1 x){return WaveReadLaneAt(v,WaveGetLaneIndex()^x);} //------------------------------------------------------------------------------------------------------------------------------ #ifdef A_HALF AH2 AWaveXorH2(AH2 v,AU1 x){return AH2_AU1(WaveReadLaneAt(AU1_AH2(v),WaveGetLaneIndex()^x));} AH4 AWaveXorH4(AH4 v,AU1 x){return AH4_AU2(WaveReadLaneAt(AU2_AH4(v),WaveGetLaneIndex()^x));} AW2 AWaveXorW2(AW2 v,AU1 x){return AW2_AU1(WaveReadLaneAt(AU1_AW2(v),WaveGetLaneIndex()^x));} AW4 AWaveXorW4(AW4 v,AU1 x){return AW4_AU1(WaveReadLaneAt(AU1_AW4(v),WaveGetLaneIndex()^x));} #endif #endif //============================================================================================================================== #endif //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // // // GPU COMMON // // //============================================================================================================================== #ifdef A_GPU // Negative and positive infinity. #define A_INFP_F AF1_AU1(0x7f800000u) #define A_INFN_F AF1_AU1(0xff800000u) //------------------------------------------------------------------------------------------------------------------------------ // Copy sign from 's' to positive 'd'. AF1 ACpySgnF1(AF1 d,AF1 s){return AF1_AU1(AU1_AF1(d)|(AU1_AF1(s)&AU1_(0x80000000u)));} AF2 ACpySgnF2(AF2 d,AF2 s){return AF2_AU2(AU2_AF2(d)|(AU2_AF2(s)&AU2_(0x80000000u)));} AF3 ACpySgnF3(AF3 d,AF3 s){return AF3_AU3(AU3_AF3(d)|(AU3_AF3(s)&AU3_(0x80000000u)));} AF4 ACpySgnF4(AF4 d,AF4 s){return AF4_AU4(AU4_AF4(d)|(AU4_AF4(s)&AU4_(0x80000000u)));} //------------------------------------------------------------------------------------------------------------------------------ // Single operation to return (useful to create a mask to use in lerp for branch free logic), // m=NaN := 0 // m>=0 := 0 // m<0 := 1 // Uses the following useful floating point logic, // saturate(+a*(-INF)==-INF) := 0 // saturate( 0*(-INF)== NaN) := 0 // saturate(-a*(-INF)==+INF) := 1 AF1 ASignedF1(AF1 m){return ASatF1(m*AF1_(A_INFN_F));} AF2 ASignedF2(AF2 m){return ASatF2(m*AF2_(A_INFN_F));} AF3 ASignedF3(AF3 m){return ASatF3(m*AF3_(A_INFN_F));} AF4 ASignedF4(AF4 m){return ASatF4(m*AF4_(A_INFN_F));} //------------------------------------------------------------------------------------------------------------------------------ AF1 AGtZeroF1(AF1 m){return ASatF1(m*AF1_(A_INFP_F));} AF2 AGtZeroF2(AF2 m){return ASatF2(m*AF2_(A_INFP_F));} AF3 AGtZeroF3(AF3 m){return ASatF3(m*AF3_(A_INFP_F));} AF4 AGtZeroF4(AF4 m){return ASatF4(m*AF4_(A_INFP_F));} //============================================================================================================================== #ifdef A_HALF #ifdef A_HLSL_6_2 #define A_INFP_H AH1_AW1((uint16_t)0x7c00u) #define A_INFN_H AH1_AW1((uint16_t)0xfc00u) #else #define A_INFP_H AH1_AW1(0x7c00u) #define A_INFN_H AH1_AW1(0xfc00u) #endif //------------------------------------------------------------------------------------------------------------------------------ AH1 ACpySgnH1(AH1 d,AH1 s){return AH1_AW1(AW1_AH1(d)|(AW1_AH1(s)&AW1_(0x8000u)));} AH2 ACpySgnH2(AH2 d,AH2 s){return AH2_AW2(AW2_AH2(d)|(AW2_AH2(s)&AW2_(0x8000u)));} AH3 ACpySgnH3(AH3 d,AH3 s){return AH3_AW3(AW3_AH3(d)|(AW3_AH3(s)&AW3_(0x8000u)));} AH4 ACpySgnH4(AH4 d,AH4 s){return AH4_AW4(AW4_AH4(d)|(AW4_AH4(s)&AW4_(0x8000u)));} //------------------------------------------------------------------------------------------------------------------------------ AH1 ASignedH1(AH1 m){return ASatH1(m*AH1_(A_INFN_H));} AH2 ASignedH2(AH2 m){return ASatH2(m*AH2_(A_INFN_H));} AH3 ASignedH3(AH3 m){return ASatH3(m*AH3_(A_INFN_H));} AH4 ASignedH4(AH4 m){return ASatH4(m*AH4_(A_INFN_H));} //------------------------------------------------------------------------------------------------------------------------------ AH1 AGtZeroH1(AH1 m){return ASatH1(m*AH1_(A_INFP_H));} AH2 AGtZeroH2(AH2 m){return ASatH2(m*AH2_(A_INFP_H));} AH3 AGtZeroH3(AH3 m){return ASatH3(m*AH3_(A_INFP_H));} AH4 AGtZeroH4(AH4 m){return ASatH4(m*AH4_(A_INFP_H));} #endif //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // [FIS] FLOAT INTEGER SORTABLE //------------------------------------------------------------------------------------------------------------------------------ // Float to integer sortable. // - If sign bit=0, flip the sign bit (positives). // - If sign bit=1, flip all bits (negatives). // Integer sortable to float. // - If sign bit=1, flip the sign bit (positives). // - If sign bit=0, flip all bits (negatives). // Has nice side effects. // - Larger integers are more positive values. // - Float zero is mapped to center of integers (so clear to integer zero is a nice default for atomic max usage). // Burns 3 ops for conversion {shift,or,xor}. //============================================================================================================================== AU1 AFisToU1(AU1 x){return x^(( AShrSU1(x,AU1_(31)))|AU1_(0x80000000));} AU1 AFisFromU1(AU1 x){return x^((~AShrSU1(x,AU1_(31)))|AU1_(0x80000000));} //------------------------------------------------------------------------------------------------------------------------------ // Just adjust high 16-bit value (useful when upper part of 32-bit word is a 16-bit float value). AU1 AFisToHiU1(AU1 x){return x^(( AShrSU1(x,AU1_(15)))|AU1_(0x80000000));} AU1 AFisFromHiU1(AU1 x){return x^((~AShrSU1(x,AU1_(15)))|AU1_(0x80000000));} //------------------------------------------------------------------------------------------------------------------------------ #ifdef A_HALF AW1 AFisToW1(AW1 x){return x^(( AShrSW1(x,AW1_(15)))|AW1_(0x8000));} AW1 AFisFromW1(AW1 x){return x^((~AShrSW1(x,AW1_(15)))|AW1_(0x8000));} //------------------------------------------------------------------------------------------------------------------------------ AW2 AFisToW2(AW2 x){return x^(( AShrSW2(x,AW2_(15)))|AW2_(0x8000));} AW2 AFisFromW2(AW2 x){return x^((~AShrSW2(x,AW2_(15)))|AW2_(0x8000));} #endif //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // [PERM] V_PERM_B32 //------------------------------------------------------------------------------------------------------------------------------ // Support for V_PERM_B32 started in the 3rd generation of GCN. //------------------------------------------------------------------------------------------------------------------------------ // yyyyxxxx - The 'i' input. // 76543210 // ======== // HGFEDCBA - Naming on permutation. //------------------------------------------------------------------------------------------------------------------------------ // TODO // ==== // - Make sure compiler optimizes this. //============================================================================================================================== #ifdef A_HALF AU1 APerm0E0A(AU2 i){return((i.x )&0xffu)|((i.y<<16)&0xff0000u);} AU1 APerm0F0B(AU2 i){return((i.x>> 8)&0xffu)|((i.y<< 8)&0xff0000u);} AU1 APerm0G0C(AU2 i){return((i.x>>16)&0xffu)|((i.y )&0xff0000u);} AU1 APerm0H0D(AU2 i){return((i.x>>24)&0xffu)|((i.y>> 8)&0xff0000u);} //------------------------------------------------------------------------------------------------------------------------------ AU1 APermHGFA(AU2 i){return((i.x )&0x000000ffu)|(i.y&0xffffff00u);} AU1 APermHGFC(AU2 i){return((i.x>>16)&0x000000ffu)|(i.y&0xffffff00u);} AU1 APermHGAE(AU2 i){return((i.x<< 8)&0x0000ff00u)|(i.y&0xffff00ffu);} AU1 APermHGCE(AU2 i){return((i.x>> 8)&0x0000ff00u)|(i.y&0xffff00ffu);} AU1 APermHAFE(AU2 i){return((i.x<<16)&0x00ff0000u)|(i.y&0xff00ffffu);} AU1 APermHCFE(AU2 i){return((i.x )&0x00ff0000u)|(i.y&0xff00ffffu);} AU1 APermAGFE(AU2 i){return((i.x<<24)&0xff000000u)|(i.y&0x00ffffffu);} AU1 APermCGFE(AU2 i){return((i.x<< 8)&0xff000000u)|(i.y&0x00ffffffu);} //------------------------------------------------------------------------------------------------------------------------------ AU1 APermGCEA(AU2 i){return((i.x)&0x00ff00ffu)|((i.y<<8)&0xff00ff00u);} AU1 APermGECA(AU2 i){return(((i.x)&0xffu)|((i.x>>8)&0xff00u)|((i.y<<16)&0xff0000u)|((i.y<<8)&0xff000000u));} #endif //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // [BUC] BYTE UNSIGNED CONVERSION //------------------------------------------------------------------------------------------------------------------------------ // Designed to use the optimal conversion, enables the scaling to possibly be factored into other computation. // Works on a range of {0 to A_BUC_<32,16>}, for <32-bit, and 16-bit> respectively. //------------------------------------------------------------------------------------------------------------------------------ // OPCODE NOTES // ============ // GCN does not do UNORM or SNORM for bytes in opcodes. // - V_CVT_F32_UBYTE{0,1,2,3} - Unsigned byte to float. // - V_CVT_PKACC_U8_F32 - Float to unsigned byte (does bit-field insert into 32-bit integer). // V_PERM_B32 does byte packing with ability to zero fill bytes as well. // - Can pull out byte values from two sources, and zero fill upper 8-bits of packed hi and lo. //------------------------------------------------------------------------------------------------------------------------------ // BYTE : FLOAT - ABuc{0,1,2,3}{To,From}U1() - Designed for V_CVT_F32_UBYTE* and V_CVT_PKACCUM_U8_F32 ops. // ==== ===== // 0 : 0 // 1 : 1 // ... // 255 : 255 // : 256 (just outside the encoding range) //------------------------------------------------------------------------------------------------------------------------------ // BYTE : FLOAT - ABuc{0,1,2,3}{To,From}U2() - Designed for 16-bit denormal tricks and V_PERM_B32. // ==== ===== // 0 : 0 // 1 : 1/512 // 2 : 1/256 // ... // 64 : 1/8 // 128 : 1/4 // 255 : 255/512 // : 1/2 (just outside the encoding range) //------------------------------------------------------------------------------------------------------------------------------ // OPTIMAL IMPLEMENTATIONS ON AMD ARCHITECTURES // ============================================ // r=ABuc0FromU1(i) // V_CVT_F32_UBYTE0 r,i // -------------------------------------------- // r=ABuc0ToU1(d,i) // V_CVT_PKACCUM_U8_F32 r,i,0,d // -------------------------------------------- // d=ABuc0FromU2(i) // Where 'k0' is an SGPR with 0x0E0A // Where 'k1' is an SGPR with {32768.0} packed into the lower 16-bits // V_PERM_B32 d,i.x,i.y,k0 // V_PK_FMA_F16 d,d,k1.x,0 // -------------------------------------------- // r=ABuc0ToU2(d,i) // Where 'k0' is an SGPR with {1.0/32768.0} packed into the lower 16-bits // Where 'k1' is an SGPR with 0x???? // Where 'k2' is an SGPR with 0x???? // V_PK_FMA_F16 i,i,k0.x,0 // V_PERM_B32 r.x,i,i,k1 // V_PERM_B32 r.y,i,i,k2 //============================================================================================================================== // Peak range for 32-bit and 16-bit operations. #define A_BUC_32 (255.0) #define A_BUC_16 (255.0/512.0) //============================================================================================================================== #if 1 // Designed to be one V_CVT_PKACCUM_U8_F32. // The extra min is required to pattern match to V_CVT_PKACCUM_U8_F32. AU1 ABuc0ToU1(AU1 d,AF1 i){return (d&0xffffff00u)|((min(AU1(i),255u) )&(0x000000ffu));} AU1 ABuc1ToU1(AU1 d,AF1 i){return (d&0xffff00ffu)|((min(AU1(i),255u)<< 8)&(0x0000ff00u));} AU1 ABuc2ToU1(AU1 d,AF1 i){return (d&0xff00ffffu)|((min(AU1(i),255u)<<16)&(0x00ff0000u));} AU1 ABuc3ToU1(AU1 d,AF1 i){return (d&0x00ffffffu)|((min(AU1(i),255u)<<24)&(0xff000000u));} //------------------------------------------------------------------------------------------------------------------------------ // Designed to be one V_CVT_F32_UBYTE*. AF1 ABuc0FromU1(AU1 i){return AF1((i )&255u);} AF1 ABuc1FromU1(AU1 i){return AF1((i>> 8)&255u);} AF1 ABuc2FromU1(AU1 i){return AF1((i>>16)&255u);} AF1 ABuc3FromU1(AU1 i){return AF1((i>>24)&255u);} #endif //============================================================================================================================== #ifdef A_HALF // Takes {x0,x1} and {y0,y1} and builds {{x0,y0},{x1,y1}}. AW2 ABuc01ToW2(AH2 x,AH2 y){x*=AH2_(1.0/32768.0);y*=AH2_(1.0/32768.0); return AW2_AU1(APermGCEA(AU2(AU1_AW2(AW2_AH2(x)),AU1_AW2(AW2_AH2(y)))));} //------------------------------------------------------------------------------------------------------------------------------ // Designed for 3 ops to do SOA to AOS and conversion. AU2 ABuc0ToU2(AU2 d,AH2 i){AU1 b=AU1_AW2(AW2_AH2(i*AH2_(1.0/32768.0))); return AU2(APermHGFA(AU2(d.x,b)),APermHGFC(AU2(d.y,b)));} AU2 ABuc1ToU2(AU2 d,AH2 i){AU1 b=AU1_AW2(AW2_AH2(i*AH2_(1.0/32768.0))); return AU2(APermHGAE(AU2(d.x,b)),APermHGCE(AU2(d.y,b)));} AU2 ABuc2ToU2(AU2 d,AH2 i){AU1 b=AU1_AW2(AW2_AH2(i*AH2_(1.0/32768.0))); return AU2(APermHAFE(AU2(d.x,b)),APermHCFE(AU2(d.y,b)));} AU2 ABuc3ToU2(AU2 d,AH2 i){AU1 b=AU1_AW2(AW2_AH2(i*AH2_(1.0/32768.0))); return AU2(APermAGFE(AU2(d.x,b)),APermCGFE(AU2(d.y,b)));} //------------------------------------------------------------------------------------------------------------------------------ // Designed for 2 ops to do both AOS to SOA, and conversion. AH2 ABuc0FromU2(AU2 i){return AH2_AW2(AW2_AU1(APerm0E0A(i)))*AH2_(32768.0);} AH2 ABuc1FromU2(AU2 i){return AH2_AW2(AW2_AU1(APerm0F0B(i)))*AH2_(32768.0);} AH2 ABuc2FromU2(AU2 i){return AH2_AW2(AW2_AU1(APerm0G0C(i)))*AH2_(32768.0);} AH2 ABuc3FromU2(AU2 i){return AH2_AW2(AW2_AU1(APerm0H0D(i)))*AH2_(32768.0);} #endif //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // [BSC] BYTE SIGNED CONVERSION //------------------------------------------------------------------------------------------------------------------------------ // Similar to [BUC]. // Works on a range of {-/+ A_BSC_<32,16>}, for <32-bit, and 16-bit> respectively. //------------------------------------------------------------------------------------------------------------------------------ // ENCODING (without zero-based encoding) // ======== // 0 = unused (can be used to mean something else) // 1 = lowest value // 128 = exact zero center (zero based encoding // 255 = highest value //------------------------------------------------------------------------------------------------------------------------------ // Zero-based [Zb] flips the MSB bit of the byte (making 128 "exact zero" actually zero). // This is useful if there is a desire for cleared values to decode as zero. //------------------------------------------------------------------------------------------------------------------------------ // BYTE : FLOAT - ABsc{0,1,2,3}{To,From}U2() - Designed for 16-bit denormal tricks and V_PERM_B32. // ==== ===== // 0 : -127/512 (unused) // 1 : -126/512 // 2 : -125/512 // ... // 128 : 0 // ... // 255 : 127/512 // : 1/4 (just outside the encoding range) //============================================================================================================================== // Peak range for 32-bit and 16-bit operations. #define A_BSC_32 (127.0) #define A_BSC_16 (127.0/512.0) //============================================================================================================================== #if 1 AU1 ABsc0ToU1(AU1 d,AF1 i){return (d&0xffffff00u)|((min(AU1(i+128.0),255u) )&(0x000000ffu));} AU1 ABsc1ToU1(AU1 d,AF1 i){return (d&0xffff00ffu)|((min(AU1(i+128.0),255u)<< 8)&(0x0000ff00u));} AU1 ABsc2ToU1(AU1 d,AF1 i){return (d&0xff00ffffu)|((min(AU1(i+128.0),255u)<<16)&(0x00ff0000u));} AU1 ABsc3ToU1(AU1 d,AF1 i){return (d&0x00ffffffu)|((min(AU1(i+128.0),255u)<<24)&(0xff000000u));} //------------------------------------------------------------------------------------------------------------------------------ AU1 ABsc0ToZbU1(AU1 d,AF1 i){return ((d&0xffffff00u)|((min(AU1(trunc(i)+128.0),255u) )&(0x000000ffu)))^0x00000080u;} AU1 ABsc1ToZbU1(AU1 d,AF1 i){return ((d&0xffff00ffu)|((min(AU1(trunc(i)+128.0),255u)<< 8)&(0x0000ff00u)))^0x00008000u;} AU1 ABsc2ToZbU1(AU1 d,AF1 i){return ((d&0xff00ffffu)|((min(AU1(trunc(i)+128.0),255u)<<16)&(0x00ff0000u)))^0x00800000u;} AU1 ABsc3ToZbU1(AU1 d,AF1 i){return ((d&0x00ffffffu)|((min(AU1(trunc(i)+128.0),255u)<<24)&(0xff000000u)))^0x80000000u;} //------------------------------------------------------------------------------------------------------------------------------ AF1 ABsc0FromU1(AU1 i){return AF1((i )&255u)-128.0;} AF1 ABsc1FromU1(AU1 i){return AF1((i>> 8)&255u)-128.0;} AF1 ABsc2FromU1(AU1 i){return AF1((i>>16)&255u)-128.0;} AF1 ABsc3FromU1(AU1 i){return AF1((i>>24)&255u)-128.0;} //------------------------------------------------------------------------------------------------------------------------------ AF1 ABsc0FromZbU1(AU1 i){return AF1(((i )&255u)^0x80u)-128.0;} AF1 ABsc1FromZbU1(AU1 i){return AF1(((i>> 8)&255u)^0x80u)-128.0;} AF1 ABsc2FromZbU1(AU1 i){return AF1(((i>>16)&255u)^0x80u)-128.0;} AF1 ABsc3FromZbU1(AU1 i){return AF1(((i>>24)&255u)^0x80u)-128.0;} #endif //============================================================================================================================== #ifdef A_HALF // Takes {x0,x1} and {y0,y1} and builds {{x0,y0},{x1,y1}}. AW2 ABsc01ToW2(AH2 x,AH2 y){x=x*AH2_(1.0/32768.0)+AH2_(0.25/32768.0);y=y*AH2_(1.0/32768.0)+AH2_(0.25/32768.0); return AW2_AU1(APermGCEA(AU2(AU1_AW2(AW2_AH2(x)),AU1_AW2(AW2_AH2(y)))));} //------------------------------------------------------------------------------------------------------------------------------ AU2 ABsc0ToU2(AU2 d,AH2 i){AU1 b=AU1_AW2(AW2_AH2(i*AH2_(1.0/32768.0)+AH2_(0.25/32768.0))); return AU2(APermHGFA(AU2(d.x,b)),APermHGFC(AU2(d.y,b)));} AU2 ABsc1ToU2(AU2 d,AH2 i){AU1 b=AU1_AW2(AW2_AH2(i*AH2_(1.0/32768.0)+AH2_(0.25/32768.0))); return AU2(APermHGAE(AU2(d.x,b)),APermHGCE(AU2(d.y,b)));} AU2 ABsc2ToU2(AU2 d,AH2 i){AU1 b=AU1_AW2(AW2_AH2(i*AH2_(1.0/32768.0)+AH2_(0.25/32768.0))); return AU2(APermHAFE(AU2(d.x,b)),APermHCFE(AU2(d.y,b)));} AU2 ABsc3ToU2(AU2 d,AH2 i){AU1 b=AU1_AW2(AW2_AH2(i*AH2_(1.0/32768.0)+AH2_(0.25/32768.0))); return AU2(APermAGFE(AU2(d.x,b)),APermCGFE(AU2(d.y,b)));} //------------------------------------------------------------------------------------------------------------------------------ AU2 ABsc0ToZbU2(AU2 d,AH2 i){AU1 b=AU1_AW2(AW2_AH2(i*AH2_(1.0/32768.0)+AH2_(0.25/32768.0)))^0x00800080u; return AU2(APermHGFA(AU2(d.x,b)),APermHGFC(AU2(d.y,b)));} AU2 ABsc1ToZbU2(AU2 d,AH2 i){AU1 b=AU1_AW2(AW2_AH2(i*AH2_(1.0/32768.0)+AH2_(0.25/32768.0)))^0x00800080u; return AU2(APermHGAE(AU2(d.x,b)),APermHGCE(AU2(d.y,b)));} AU2 ABsc2ToZbU2(AU2 d,AH2 i){AU1 b=AU1_AW2(AW2_AH2(i*AH2_(1.0/32768.0)+AH2_(0.25/32768.0)))^0x00800080u; return AU2(APermHAFE(AU2(d.x,b)),APermHCFE(AU2(d.y,b)));} AU2 ABsc3ToZbU2(AU2 d,AH2 i){AU1 b=AU1_AW2(AW2_AH2(i*AH2_(1.0/32768.0)+AH2_(0.25/32768.0)))^0x00800080u; return AU2(APermAGFE(AU2(d.x,b)),APermCGFE(AU2(d.y,b)));} //------------------------------------------------------------------------------------------------------------------------------ AH2 ABsc0FromU2(AU2 i){return AH2_AW2(AW2_AU1(APerm0E0A(i)))*AH2_(32768.0)-AH2_(0.25);} AH2 ABsc1FromU2(AU2 i){return AH2_AW2(AW2_AU1(APerm0F0B(i)))*AH2_(32768.0)-AH2_(0.25);} AH2 ABsc2FromU2(AU2 i){return AH2_AW2(AW2_AU1(APerm0G0C(i)))*AH2_(32768.0)-AH2_(0.25);} AH2 ABsc3FromU2(AU2 i){return AH2_AW2(AW2_AU1(APerm0H0D(i)))*AH2_(32768.0)-AH2_(0.25);} //------------------------------------------------------------------------------------------------------------------------------ AH2 ABsc0FromZbU2(AU2 i){return AH2_AW2(AW2_AU1(APerm0E0A(i)^0x00800080u))*AH2_(32768.0)-AH2_(0.25);} AH2 ABsc1FromZbU2(AU2 i){return AH2_AW2(AW2_AU1(APerm0F0B(i)^0x00800080u))*AH2_(32768.0)-AH2_(0.25);} AH2 ABsc2FromZbU2(AU2 i){return AH2_AW2(AW2_AU1(APerm0G0C(i)^0x00800080u))*AH2_(32768.0)-AH2_(0.25);} AH2 ABsc3FromZbU2(AU2 i){return AH2_AW2(AW2_AU1(APerm0H0D(i)^0x00800080u))*AH2_(32768.0)-AH2_(0.25);} #endif //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // HALF APPROXIMATIONS //------------------------------------------------------------------------------------------------------------------------------ // These support only positive inputs. // Did not see value yet in specialization for range. // Using quick testing, ended up mostly getting the same "best" approximation for various ranges. // With hardware that can co-execute transcendentals, the value in approximations could be less than expected. // However from a latency perspective, if execution of a transcendental is 4 clk, with no packed support, -> 8 clk total. // And co-execution would require a compiler interleaving a lot of independent work for packed usage. //------------------------------------------------------------------------------------------------------------------------------ // The one Newton Raphson iteration form of rsq() was skipped (requires 6 ops total). // Same with sqrt(), as this could be x*rsq() (7 ops). //============================================================================================================================== #ifdef A_HALF // Minimize squared error across full positive range, 2 ops. // The 0x1de2 based approximation maps {0 to 1} input maps to < 1 output. AH1 APrxLoSqrtH1(AH1 a){return AH1_AW1((AW1_AH1(a)>>AW1_(1))+AW1_(0x1de2));} AH2 APrxLoSqrtH2(AH2 a){return AH2_AW2((AW2_AH2(a)>>AW2_(1))+AW2_(0x1de2));} AH3 APrxLoSqrtH3(AH3 a){return AH3_AW3((AW3_AH3(a)>>AW3_(1))+AW3_(0x1de2));} AH4 APrxLoSqrtH4(AH4 a){return AH4_AW4((AW4_AH4(a)>>AW4_(1))+AW4_(0x1de2));} //------------------------------------------------------------------------------------------------------------------------------ // Lower precision estimation, 1 op. // Minimize squared error across {smallest normal to 16384.0}. AH1 APrxLoRcpH1(AH1 a){return AH1_AW1(AW1_(0x7784)-AW1_AH1(a));} AH2 APrxLoRcpH2(AH2 a){return AH2_AW2(AW2_(0x7784)-AW2_AH2(a));} AH3 APrxLoRcpH3(AH3 a){return AH3_AW3(AW3_(0x7784)-AW3_AH3(a));} AH4 APrxLoRcpH4(AH4 a){return AH4_AW4(AW4_(0x7784)-AW4_AH4(a));} //------------------------------------------------------------------------------------------------------------------------------ // Medium precision estimation, one Newton Raphson iteration, 3 ops. AH1 APrxMedRcpH1(AH1 a){AH1 b=AH1_AW1(AW1_(0x778d)-AW1_AH1(a));return b*(-b*a+AH1_(2.0));} AH2 APrxMedRcpH2(AH2 a){AH2 b=AH2_AW2(AW2_(0x778d)-AW2_AH2(a));return b*(-b*a+AH2_(2.0));} AH3 APrxMedRcpH3(AH3 a){AH3 b=AH3_AW3(AW3_(0x778d)-AW3_AH3(a));return b*(-b*a+AH3_(2.0));} AH4 APrxMedRcpH4(AH4 a){AH4 b=AH4_AW4(AW4_(0x778d)-AW4_AH4(a));return b*(-b*a+AH4_(2.0));} //------------------------------------------------------------------------------------------------------------------------------ // Minimize squared error across {smallest normal to 16384.0}, 2 ops. AH1 APrxLoRsqH1(AH1 a){return AH1_AW1(AW1_(0x59a3)-(AW1_AH1(a)>>AW1_(1)));} AH2 APrxLoRsqH2(AH2 a){return AH2_AW2(AW2_(0x59a3)-(AW2_AH2(a)>>AW2_(1)));} AH3 APrxLoRsqH3(AH3 a){return AH3_AW3(AW3_(0x59a3)-(AW3_AH3(a)>>AW3_(1)));} AH4 APrxLoRsqH4(AH4 a){return AH4_AW4(AW4_(0x59a3)-(AW4_AH4(a)>>AW4_(1)));} #endif //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // FLOAT APPROXIMATIONS //------------------------------------------------------------------------------------------------------------------------------ // Michal Drobot has an excellent presentation on these: "Low Level Optimizations For GCN", // - Idea dates back to SGI, then to Quake 3, etc. // - https://michaldrobot.files.wordpress.com/2014/05/gcn_alu_opt_digitaldragons2014.pdf // - sqrt(x)=rsqrt(x)*x // - rcp(x)=rsqrt(x)*rsqrt(x) for positive x // - https://github.com/michaldrobot/ShaderFastLibs/blob/master/ShaderFastMathLib.h //------------------------------------------------------------------------------------------------------------------------------ // These below are from perhaps less complete searching for optimal. // Used FP16 normal range for testing with +4096 32-bit step size for sampling error. // So these match up well with the half approximations. //============================================================================================================================== AF1 APrxLoSqrtF1(AF1 a){return AF1_AU1((AU1_AF1(a)>>AU1_(1))+AU1_(0x1fbc4639));} AF1 APrxLoRcpF1(AF1 a){return AF1_AU1(AU1_(0x7ef07ebb)-AU1_AF1(a));} AF1 APrxMedRcpF1(AF1 a){AF1 b=AF1_AU1(AU1_(0x7ef19fff)-AU1_AF1(a));return b*(-b*a+AF1_(2.0));} AF1 APrxLoRsqF1(AF1 a){return AF1_AU1(AU1_(0x5f347d74)-(AU1_AF1(a)>>AU1_(1)));} //------------------------------------------------------------------------------------------------------------------------------ AF2 APrxLoSqrtF2(AF2 a){return AF2_AU2((AU2_AF2(a)>>AU2_(1))+AU2_(0x1fbc4639));} AF2 APrxLoRcpF2(AF2 a){return AF2_AU2(AU2_(0x7ef07ebb)-AU2_AF2(a));} AF2 APrxMedRcpF2(AF2 a){AF2 b=AF2_AU2(AU2_(0x7ef19fff)-AU2_AF2(a));return b*(-b*a+AF2_(2.0));} AF2 APrxLoRsqF2(AF2 a){return AF2_AU2(AU2_(0x5f347d74)-(AU2_AF2(a)>>AU2_(1)));} //------------------------------------------------------------------------------------------------------------------------------ AF3 APrxLoSqrtF3(AF3 a){return AF3_AU3((AU3_AF3(a)>>AU3_(1))+AU3_(0x1fbc4639));} AF3 APrxLoRcpF3(AF3 a){return AF3_AU3(AU3_(0x7ef07ebb)-AU3_AF3(a));} AF3 APrxMedRcpF3(AF3 a){AF3 b=AF3_AU3(AU3_(0x7ef19fff)-AU3_AF3(a));return b*(-b*a+AF3_(2.0));} AF3 APrxLoRsqF3(AF3 a){return AF3_AU3(AU3_(0x5f347d74)-(AU3_AF3(a)>>AU3_(1)));} //------------------------------------------------------------------------------------------------------------------------------ AF4 APrxLoSqrtF4(AF4 a){return AF4_AU4((AU4_AF4(a)>>AU4_(1))+AU4_(0x1fbc4639));} AF4 APrxLoRcpF4(AF4 a){return AF4_AU4(AU4_(0x7ef07ebb)-AU4_AF4(a));} AF4 APrxMedRcpF4(AF4 a){AF4 b=AF4_AU4(AU4_(0x7ef19fff)-AU4_AF4(a));return b*(-b*a+AF4_(2.0));} AF4 APrxLoRsqF4(AF4 a){return AF4_AU4(AU4_(0x5f347d74)-(AU4_AF4(a)>>AU4_(1)));} //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // PQ APPROXIMATIONS //------------------------------------------------------------------------------------------------------------------------------ // PQ is very close to x^(1/8). The functions below Use the fast float approximation method to do // PQ<~>Gamma2 (4th power and fast 4th root) and PQ<~>Linear (8th power and fast 8th root). Maximum error is ~0.2%. //============================================================================================================================== // Helpers AF1 Quart(AF1 a) { a = a * a; return a * a;} AF1 Oct(AF1 a) { a = a * a; a = a * a; return a * a; } AF2 Quart(AF2 a) { a = a * a; return a * a; } AF2 Oct(AF2 a) { a = a * a; a = a * a; return a * a; } AF3 Quart(AF3 a) { a = a * a; return a * a; } AF3 Oct(AF3 a) { a = a * a; a = a * a; return a * a; } AF4 Quart(AF4 a) { a = a * a; return a * a; } AF4 Oct(AF4 a) { a = a * a; a = a * a; return a * a; } //------------------------------------------------------------------------------------------------------------------------------ AF1 APrxPQToGamma2(AF1 a) { return Quart(a); } AF1 APrxPQToLinear(AF1 a) { return Oct(a); } AF1 APrxLoGamma2ToPQ(AF1 a) { return AF1_AU1((AU1_AF1(a) >> AU1_(2)) + AU1_(0x2F9A4E46)); } AF1 APrxMedGamma2ToPQ(AF1 a) { AF1 b = AF1_AU1((AU1_AF1(a) >> AU1_(2)) + AU1_(0x2F9A4E46)); AF1 b4 = Quart(b); return b - b * (b4 - a) / (AF1_(4.0) * b4); } AF1 APrxHighGamma2ToPQ(AF1 a) { return sqrt(sqrt(a)); } AF1 APrxLoLinearToPQ(AF1 a) { return AF1_AU1((AU1_AF1(a) >> AU1_(3)) + AU1_(0x378D8723)); } AF1 APrxMedLinearToPQ(AF1 a) { AF1 b = AF1_AU1((AU1_AF1(a) >> AU1_(3)) + AU1_(0x378D8723)); AF1 b8 = Oct(b); return b - b * (b8 - a) / (AF1_(8.0) * b8); } AF1 APrxHighLinearToPQ(AF1 a) { return sqrt(sqrt(sqrt(a))); } //------------------------------------------------------------------------------------------------------------------------------ AF2 APrxPQToGamma2(AF2 a) { return Quart(a); } AF2 APrxPQToLinear(AF2 a) { return Oct(a); } AF2 APrxLoGamma2ToPQ(AF2 a) { return AF2_AU2((AU2_AF2(a) >> AU2_(2)) + AU2_(0x2F9A4E46)); } AF2 APrxMedGamma2ToPQ(AF2 a) { AF2 b = AF2_AU2((AU2_AF2(a) >> AU2_(2)) + AU2_(0x2F9A4E46)); AF2 b4 = Quart(b); return b - b * (b4 - a) / (AF1_(4.0) * b4); } AF2 APrxHighGamma2ToPQ(AF2 a) { return sqrt(sqrt(a)); } AF2 APrxLoLinearToPQ(AF2 a) { return AF2_AU2((AU2_AF2(a) >> AU2_(3)) + AU2_(0x378D8723)); } AF2 APrxMedLinearToPQ(AF2 a) { AF2 b = AF2_AU2((AU2_AF2(a) >> AU2_(3)) + AU2_(0x378D8723)); AF2 b8 = Oct(b); return b - b * (b8 - a) / (AF1_(8.0) * b8); } AF2 APrxHighLinearToPQ(AF2 a) { return sqrt(sqrt(sqrt(a))); } //------------------------------------------------------------------------------------------------------------------------------ AF3 APrxPQToGamma2(AF3 a) { return Quart(a); } AF3 APrxPQToLinear(AF3 a) { return Oct(a); } AF3 APrxLoGamma2ToPQ(AF3 a) { return AF3_AU3((AU3_AF3(a) >> AU3_(2)) + AU3_(0x2F9A4E46)); } AF3 APrxMedGamma2ToPQ(AF3 a) { AF3 b = AF3_AU3((AU3_AF3(a) >> AU3_(2)) + AU3_(0x2F9A4E46)); AF3 b4 = Quart(b); return b - b * (b4 - a) / (AF1_(4.0) * b4); } AF3 APrxHighGamma2ToPQ(AF3 a) { return sqrt(sqrt(a)); } AF3 APrxLoLinearToPQ(AF3 a) { return AF3_AU3((AU3_AF3(a) >> AU3_(3)) + AU3_(0x378D8723)); } AF3 APrxMedLinearToPQ(AF3 a) { AF3 b = AF3_AU3((AU3_AF3(a) >> AU3_(3)) + AU3_(0x378D8723)); AF3 b8 = Oct(b); return b - b * (b8 - a) / (AF1_(8.0) * b8); } AF3 APrxHighLinearToPQ(AF3 a) { return sqrt(sqrt(sqrt(a))); } //------------------------------------------------------------------------------------------------------------------------------ AF4 APrxPQToGamma2(AF4 a) { return Quart(a); } AF4 APrxPQToLinear(AF4 a) { return Oct(a); } AF4 APrxLoGamma2ToPQ(AF4 a) { return AF4_AU4((AU4_AF4(a) >> AU4_(2)) + AU4_(0x2F9A4E46)); } AF4 APrxMedGamma2ToPQ(AF4 a) { AF4 b = AF4_AU4((AU4_AF4(a) >> AU4_(2)) + AU4_(0x2F9A4E46)); AF4 b4 = Quart(b); return b - b * (b4 - a) / (AF1_(4.0) * b4); } AF4 APrxHighGamma2ToPQ(AF4 a) { return sqrt(sqrt(a)); } AF4 APrxLoLinearToPQ(AF4 a) { return AF4_AU4((AU4_AF4(a) >> AU4_(3)) + AU4_(0x378D8723)); } AF4 APrxMedLinearToPQ(AF4 a) { AF4 b = AF4_AU4((AU4_AF4(a) >> AU4_(3)) + AU4_(0x378D8723)); AF4 b8 = Oct(b); return b - b * (b8 - a) / (AF1_(8.0) * b8); } AF4 APrxHighLinearToPQ(AF4 a) { return sqrt(sqrt(sqrt(a))); } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // PARABOLIC SIN & COS //------------------------------------------------------------------------------------------------------------------------------ // Approximate answers to transcendental questions. //------------------------------------------------------------------------------------------------------------------------------ //============================================================================================================================== #if 1 // Valid input range is {-1 to 1} representing {0 to 2 pi}. // Output range is {-1/4 to 1/4} representing {-1 to 1}. AF1 APSinF1(AF1 x){return x*abs(x)-x;} // MAD. AF2 APSinF2(AF2 x){return x*abs(x)-x;} AF1 APCosF1(AF1 x){x=AFractF1(x*AF1_(0.5)+AF1_(0.75));x=x*AF1_(2.0)-AF1_(1.0);return APSinF1(x);} // 3x MAD, FRACT AF2 APCosF2(AF2 x){x=AFractF2(x*AF2_(0.5)+AF2_(0.75));x=x*AF2_(2.0)-AF2_(1.0);return APSinF2(x);} AF2 APSinCosF1(AF1 x){AF1 y=AFractF1(x*AF1_(0.5)+AF1_(0.75));y=y*AF1_(2.0)-AF1_(1.0);return APSinF2(AF2(x,y));} #endif //------------------------------------------------------------------------------------------------------------------------------ #ifdef A_HALF // For a packed {sin,cos} pair, // - Native takes 16 clocks and 4 issue slots (no packed transcendentals). // - Parabolic takes 8 clocks and 8 issue slots (only fract is non-packed). AH1 APSinH1(AH1 x){return x*abs(x)-x;} AH2 APSinH2(AH2 x){return x*abs(x)-x;} // AND,FMA AH1 APCosH1(AH1 x){x=AFractH1(x*AH1_(0.5)+AH1_(0.75));x=x*AH1_(2.0)-AH1_(1.0);return APSinH1(x);} AH2 APCosH2(AH2 x){x=AFractH2(x*AH2_(0.5)+AH2_(0.75));x=x*AH2_(2.0)-AH2_(1.0);return APSinH2(x);} // 3x FMA, 2xFRACT, AND AH2 APSinCosH1(AH1 x){AH1 y=AFractH1(x*AH1_(0.5)+AH1_(0.75));y=y*AH1_(2.0)-AH1_(1.0);return APSinH2(AH2(x,y));} #endif //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // [ZOL] ZERO ONE LOGIC //------------------------------------------------------------------------------------------------------------------------------ // Conditional free logic designed for easy 16-bit packing, and backwards porting to 32-bit. //------------------------------------------------------------------------------------------------------------------------------ // 0 := false // 1 := true //------------------------------------------------------------------------------------------------------------------------------ // AndNot(x,y) -> !(x&y) .... One op. // AndOr(x,y,z) -> (x&y)|z ... One op. // GtZero(x) -> x>0.0 ..... One op. // Sel(x,y,z) -> x?y:z ..... Two ops, has no precision loss. // Signed(x) -> x<0.0 ..... One op. // ZeroPass(x,y) -> x?0:y ..... Two ops, 'y' is a pass through safe for aliasing as integer. //------------------------------------------------------------------------------------------------------------------------------ // OPTIMIZATION NOTES // ================== // - On Vega to use 2 constants in a packed op, pass in as one AW2 or one AH2 'k.xy' and use as 'k.xx' and 'k.yy'. // For example 'a.xy*k.xx+k.yy'. //============================================================================================================================== #if 1 AU1 AZolAndU1(AU1 x,AU1 y){return min(x,y);} AU2 AZolAndU2(AU2 x,AU2 y){return min(x,y);} AU3 AZolAndU3(AU3 x,AU3 y){return min(x,y);} AU4 AZolAndU4(AU4 x,AU4 y){return min(x,y);} //------------------------------------------------------------------------------------------------------------------------------ AU1 AZolNotU1(AU1 x){return x^AU1_(1);} AU2 AZolNotU2(AU2 x){return x^AU2_(1);} AU3 AZolNotU3(AU3 x){return x^AU3_(1);} AU4 AZolNotU4(AU4 x){return x^AU4_(1);} //------------------------------------------------------------------------------------------------------------------------------ AU1 AZolOrU1(AU1 x,AU1 y){return max(x,y);} AU2 AZolOrU2(AU2 x,AU2 y){return max(x,y);} AU3 AZolOrU3(AU3 x,AU3 y){return max(x,y);} AU4 AZolOrU4(AU4 x,AU4 y){return max(x,y);} //============================================================================================================================== AU1 AZolF1ToU1(AF1 x){return AU1(x);} AU2 AZolF2ToU2(AF2 x){return AU2(x);} AU3 AZolF3ToU3(AF3 x){return AU3(x);} AU4 AZolF4ToU4(AF4 x){return AU4(x);} //------------------------------------------------------------------------------------------------------------------------------ // 2 ops, denormals don't work in 32-bit on PC (and if they are enabled, OMOD is disabled). AU1 AZolNotF1ToU1(AF1 x){return AU1(AF1_(1.0)-x);} AU2 AZolNotF2ToU2(AF2 x){return AU2(AF2_(1.0)-x);} AU3 AZolNotF3ToU3(AF3 x){return AU3(AF3_(1.0)-x);} AU4 AZolNotF4ToU4(AF4 x){return AU4(AF4_(1.0)-x);} //------------------------------------------------------------------------------------------------------------------------------ AF1 AZolU1ToF1(AU1 x){return AF1(x);} AF2 AZolU2ToF2(AU2 x){return AF2(x);} AF3 AZolU3ToF3(AU3 x){return AF3(x);} AF4 AZolU4ToF4(AU4 x){return AF4(x);} //============================================================================================================================== AF1 AZolAndF1(AF1 x,AF1 y){return min(x,y);} AF2 AZolAndF2(AF2 x,AF2 y){return min(x,y);} AF3 AZolAndF3(AF3 x,AF3 y){return min(x,y);} AF4 AZolAndF4(AF4 x,AF4 y){return min(x,y);} //------------------------------------------------------------------------------------------------------------------------------ AF1 ASolAndNotF1(AF1 x,AF1 y){return (-x)*y+AF1_(1.0);} AF2 ASolAndNotF2(AF2 x,AF2 y){return (-x)*y+AF2_(1.0);} AF3 ASolAndNotF3(AF3 x,AF3 y){return (-x)*y+AF3_(1.0);} AF4 ASolAndNotF4(AF4 x,AF4 y){return (-x)*y+AF4_(1.0);} //------------------------------------------------------------------------------------------------------------------------------ AF1 AZolAndOrF1(AF1 x,AF1 y,AF1 z){return ASatF1(x*y+z);} AF2 AZolAndOrF2(AF2 x,AF2 y,AF2 z){return ASatF2(x*y+z);} AF3 AZolAndOrF3(AF3 x,AF3 y,AF3 z){return ASatF3(x*y+z);} AF4 AZolAndOrF4(AF4 x,AF4 y,AF4 z){return ASatF4(x*y+z);} //------------------------------------------------------------------------------------------------------------------------------ AF1 AZolGtZeroF1(AF1 x){return ASatF1(x*AF1_(A_INFP_F));} AF2 AZolGtZeroF2(AF2 x){return ASatF2(x*AF2_(A_INFP_F));} AF3 AZolGtZeroF3(AF3 x){return ASatF3(x*AF3_(A_INFP_F));} AF4 AZolGtZeroF4(AF4 x){return ASatF4(x*AF4_(A_INFP_F));} //------------------------------------------------------------------------------------------------------------------------------ AF1 AZolNotF1(AF1 x){return AF1_(1.0)-x;} AF2 AZolNotF2(AF2 x){return AF2_(1.0)-x;} AF3 AZolNotF3(AF3 x){return AF3_(1.0)-x;} AF4 AZolNotF4(AF4 x){return AF4_(1.0)-x;} //------------------------------------------------------------------------------------------------------------------------------ AF1 AZolOrF1(AF1 x,AF1 y){return max(x,y);} AF2 AZolOrF2(AF2 x,AF2 y){return max(x,y);} AF3 AZolOrF3(AF3 x,AF3 y){return max(x,y);} AF4 AZolOrF4(AF4 x,AF4 y){return max(x,y);} //------------------------------------------------------------------------------------------------------------------------------ AF1 AZolSelF1(AF1 x,AF1 y,AF1 z){AF1 r=(-x)*z+z;return x*y+r;} AF2 AZolSelF2(AF2 x,AF2 y,AF2 z){AF2 r=(-x)*z+z;return x*y+r;} AF3 AZolSelF3(AF3 x,AF3 y,AF3 z){AF3 r=(-x)*z+z;return x*y+r;} AF4 AZolSelF4(AF4 x,AF4 y,AF4 z){AF4 r=(-x)*z+z;return x*y+r;} //------------------------------------------------------------------------------------------------------------------------------ AF1 AZolSignedF1(AF1 x){return ASatF1(x*AF1_(A_INFN_F));} AF2 AZolSignedF2(AF2 x){return ASatF2(x*AF2_(A_INFN_F));} AF3 AZolSignedF3(AF3 x){return ASatF3(x*AF3_(A_INFN_F));} AF4 AZolSignedF4(AF4 x){return ASatF4(x*AF4_(A_INFN_F));} //------------------------------------------------------------------------------------------------------------------------------ AF1 AZolZeroPassF1(AF1 x,AF1 y){return AF1_AU1((AU1_AF1(x)!=AU1_(0))?AU1_(0):AU1_AF1(y));} AF2 AZolZeroPassF2(AF2 x,AF2 y){return AF2_AU2((AU2_AF2(x)!=AU2_(0))?AU2_(0):AU2_AF2(y));} AF3 AZolZeroPassF3(AF3 x,AF3 y){return AF3_AU3((AU3_AF3(x)!=AU3_(0))?AU3_(0):AU3_AF3(y));} AF4 AZolZeroPassF4(AF4 x,AF4 y){return AF4_AU4((AU4_AF4(x)!=AU4_(0))?AU4_(0):AU4_AF4(y));} #endif //============================================================================================================================== #ifdef A_HALF AW1 AZolAndW1(AW1 x,AW1 y){return min(x,y);} AW2 AZolAndW2(AW2 x,AW2 y){return min(x,y);} AW3 AZolAndW3(AW3 x,AW3 y){return min(x,y);} AW4 AZolAndW4(AW4 x,AW4 y){return min(x,y);} //------------------------------------------------------------------------------------------------------------------------------ AW1 AZolNotW1(AW1 x){return x^AW1_(1);} AW2 AZolNotW2(AW2 x){return x^AW2_(1);} AW3 AZolNotW3(AW3 x){return x^AW3_(1);} AW4 AZolNotW4(AW4 x){return x^AW4_(1);} //------------------------------------------------------------------------------------------------------------------------------ AW1 AZolOrW1(AW1 x,AW1 y){return max(x,y);} AW2 AZolOrW2(AW2 x,AW2 y){return max(x,y);} AW3 AZolOrW3(AW3 x,AW3 y){return max(x,y);} AW4 AZolOrW4(AW4 x,AW4 y){return max(x,y);} //============================================================================================================================== // Uses denormal trick. AW1 AZolH1ToW1(AH1 x){return AW1_AH1(x*AH1_AW1(AW1_(1)));} AW2 AZolH2ToW2(AH2 x){return AW2_AH2(x*AH2_AW2(AW2_(1)));} AW3 AZolH3ToW3(AH3 x){return AW3_AH3(x*AH3_AW3(AW3_(1)));} AW4 AZolH4ToW4(AH4 x){return AW4_AH4(x*AH4_AW4(AW4_(1)));} //------------------------------------------------------------------------------------------------------------------------------ // AMD arch lacks a packed conversion opcode. AH1 AZolW1ToH1(AW1 x){return AH1_AW1(x*AW1_AH1(AH1_(1.0)));} AH2 AZolW2ToH2(AW2 x){return AH2_AW2(x*AW2_AH2(AH2_(1.0)));} AH3 AZolW1ToH3(AW3 x){return AH3_AW3(x*AW3_AH3(AH3_(1.0)));} AH4 AZolW2ToH4(AW4 x){return AH4_AW4(x*AW4_AH4(AH4_(1.0)));} //============================================================================================================================== AH1 AZolAndH1(AH1 x,AH1 y){return min(x,y);} AH2 AZolAndH2(AH2 x,AH2 y){return min(x,y);} AH3 AZolAndH3(AH3 x,AH3 y){return min(x,y);} AH4 AZolAndH4(AH4 x,AH4 y){return min(x,y);} //------------------------------------------------------------------------------------------------------------------------------ AH1 ASolAndNotH1(AH1 x,AH1 y){return (-x)*y+AH1_(1.0);} AH2 ASolAndNotH2(AH2 x,AH2 y){return (-x)*y+AH2_(1.0);} AH3 ASolAndNotH3(AH3 x,AH3 y){return (-x)*y+AH3_(1.0);} AH4 ASolAndNotH4(AH4 x,AH4 y){return (-x)*y+AH4_(1.0);} //------------------------------------------------------------------------------------------------------------------------------ AH1 AZolAndOrH1(AH1 x,AH1 y,AH1 z){return ASatH1(x*y+z);} AH2 AZolAndOrH2(AH2 x,AH2 y,AH2 z){return ASatH2(x*y+z);} AH3 AZolAndOrH3(AH3 x,AH3 y,AH3 z){return ASatH3(x*y+z);} AH4 AZolAndOrH4(AH4 x,AH4 y,AH4 z){return ASatH4(x*y+z);} //------------------------------------------------------------------------------------------------------------------------------ AH1 AZolGtZeroH1(AH1 x){return ASatH1(x*AH1_(A_INFP_H));} AH2 AZolGtZeroH2(AH2 x){return ASatH2(x*AH2_(A_INFP_H));} AH3 AZolGtZeroH3(AH3 x){return ASatH3(x*AH3_(A_INFP_H));} AH4 AZolGtZeroH4(AH4 x){return ASatH4(x*AH4_(A_INFP_H));} //------------------------------------------------------------------------------------------------------------------------------ AH1 AZolNotH1(AH1 x){return AH1_(1.0)-x;} AH2 AZolNotH2(AH2 x){return AH2_(1.0)-x;} AH3 AZolNotH3(AH3 x){return AH3_(1.0)-x;} AH4 AZolNotH4(AH4 x){return AH4_(1.0)-x;} //------------------------------------------------------------------------------------------------------------------------------ AH1 AZolOrH1(AH1 x,AH1 y){return max(x,y);} AH2 AZolOrH2(AH2 x,AH2 y){return max(x,y);} AH3 AZolOrH3(AH3 x,AH3 y){return max(x,y);} AH4 AZolOrH4(AH4 x,AH4 y){return max(x,y);} //------------------------------------------------------------------------------------------------------------------------------ AH1 AZolSelH1(AH1 x,AH1 y,AH1 z){AH1 r=(-x)*z+z;return x*y+r;} AH2 AZolSelH2(AH2 x,AH2 y,AH2 z){AH2 r=(-x)*z+z;return x*y+r;} AH3 AZolSelH3(AH3 x,AH3 y,AH3 z){AH3 r=(-x)*z+z;return x*y+r;} AH4 AZolSelH4(AH4 x,AH4 y,AH4 z){AH4 r=(-x)*z+z;return x*y+r;} //------------------------------------------------------------------------------------------------------------------------------ AH1 AZolSignedH1(AH1 x){return ASatH1(x*AH1_(A_INFN_H));} AH2 AZolSignedH2(AH2 x){return ASatH2(x*AH2_(A_INFN_H));} AH3 AZolSignedH3(AH3 x){return ASatH3(x*AH3_(A_INFN_H));} AH4 AZolSignedH4(AH4 x){return ASatH4(x*AH4_(A_INFN_H));} #endif //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // COLOR CONVERSIONS //------------------------------------------------------------------------------------------------------------------------------ // These are all linear to/from some other space (where 'linear' has been shortened out of the function name). // So 'ToGamma' is 'LinearToGamma', and 'FromGamma' is 'LinearFromGamma'. // These are branch free implementations. // The AToSrgbF1() function is useful for stores for compute shaders for GPUs without hardware linear->sRGB store conversion. //------------------------------------------------------------------------------------------------------------------------------ // TRANSFER FUNCTIONS // ================== // 709 ..... Rec709 used for some HDTVs // Gamma ... Typically 2.2 for some PC displays, or 2.4-2.5 for CRTs, or 2.2 FreeSync2 native // Pq ...... PQ native for HDR10 // Srgb .... The sRGB output, typical of PC displays, useful for 10-bit output, or storing to 8-bit UNORM without SRGB type // Two ..... Gamma 2.0, fastest conversion (useful for intermediate pass approximations) // Three ... Gamma 3.0, less fast, but good for HDR. //------------------------------------------------------------------------------------------------------------------------------ // KEEPING TO SPEC // =============== // Both Rec.709 and sRGB have a linear segment which as spec'ed would intersect the curved segment 2 times. // (a.) For 8-bit sRGB, steps {0 to 10.3} are in the linear region (4% of the encoding range). // (b.) For 8-bit 709, steps {0 to 20.7} are in the linear region (8% of the encoding range). // Also there is a slight step in the transition regions. // Precision of the coefficients in the spec being the likely cause. // Main usage case of the sRGB code is to do the linear->sRGB converstion in a compute shader before store. // This is to work around lack of hardware (typically only ROP does the conversion for free). // To "correct" the linear segment, would be to introduce error, because hardware decode of sRGB->linear is fixed (and free). // So this header keeps with the spec. // For linear->sRGB transforms, the linear segment in some respects reduces error, because rounding in that region is linear. // Rounding in the curved region in hardware (and fast software code) introduces error due to rounding in non-linear. //------------------------------------------------------------------------------------------------------------------------------ // FOR PQ // ====== // Both input and output is {0.0-1.0}, and where output 1.0 represents 10000.0 cd/m^2. // All constants are only specified to FP32 precision. // External PQ source reference, // - https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESlib.Utilities_Color.a1.0.1.ctl //------------------------------------------------------------------------------------------------------------------------------ // PACKED VERSIONS // =============== // These are the A*H2() functions. // There is no PQ functions as FP16 seemed to not have enough precision for the conversion. // The remaining functions are "good enough" for 8-bit, and maybe 10-bit if not concerned about a few 1-bit errors. // Precision is lowest in the 709 conversion, higher in sRGB, higher still in Two and Gamma (when using 2.2 at least). //------------------------------------------------------------------------------------------------------------------------------ // NOTES // ===== // Could be faster for PQ conversions to be in ALU or a texture lookup depending on usage case. //============================================================================================================================== #if 1 AF1 ATo709F1(AF1 c){AF3 j=AF3(0.018*4.5,4.5,0.45);AF2 k=AF2(1.099,-0.099); return clamp(j.x ,c*j.y ,pow(c,j.z )*k.x +k.y );} AF2 ATo709F2(AF2 c){AF3 j=AF3(0.018*4.5,4.5,0.45);AF2 k=AF2(1.099,-0.099); return clamp(j.xx ,c*j.yy ,pow(c,j.zz )*k.xx +k.yy );} AF3 ATo709F3(AF3 c){AF3 j=AF3(0.018*4.5,4.5,0.45);AF2 k=AF2(1.099,-0.099); return clamp(j.xxx,c*j.yyy,pow(c,j.zzz)*k.xxx+k.yyy);} //------------------------------------------------------------------------------------------------------------------------------ // Note 'rcpX' is '1/x', where the 'x' is what would be used in AFromGamma(). AF1 AToGammaF1(AF1 c,AF1 rcpX){return pow(c,AF1_(rcpX));} AF2 AToGammaF2(AF2 c,AF1 rcpX){return pow(c,AF2_(rcpX));} AF3 AToGammaF3(AF3 c,AF1 rcpX){return pow(c,AF3_(rcpX));} //------------------------------------------------------------------------------------------------------------------------------ AF1 AToPqF1(AF1 x){AF1 p=pow(x,AF1_(0.159302)); return pow((AF1_(0.835938)+AF1_(18.8516)*p)/(AF1_(1.0)+AF1_(18.6875)*p),AF1_(78.8438));} AF2 AToPqF1(AF2 x){AF2 p=pow(x,AF2_(0.159302)); return pow((AF2_(0.835938)+AF2_(18.8516)*p)/(AF2_(1.0)+AF2_(18.6875)*p),AF2_(78.8438));} AF3 AToPqF1(AF3 x){AF3 p=pow(x,AF3_(0.159302)); return pow((AF3_(0.835938)+AF3_(18.8516)*p)/(AF3_(1.0)+AF3_(18.6875)*p),AF3_(78.8438));} //------------------------------------------------------------------------------------------------------------------------------ AF1 AToSrgbF1(AF1 c){AF3 j=AF3(0.0031308*12.92,12.92,1.0/2.4);AF2 k=AF2(1.055,-0.055); return clamp(j.x ,c*j.y ,pow(c,j.z )*k.x +k.y );} AF2 AToSrgbF2(AF2 c){AF3 j=AF3(0.0031308*12.92,12.92,1.0/2.4);AF2 k=AF2(1.055,-0.055); return clamp(j.xx ,c*j.yy ,pow(c,j.zz )*k.xx +k.yy );} AF3 AToSrgbF3(AF3 c){AF3 j=AF3(0.0031308*12.92,12.92,1.0/2.4);AF2 k=AF2(1.055,-0.055); return clamp(j.xxx,c*j.yyy,pow(c,j.zzz)*k.xxx+k.yyy);} //------------------------------------------------------------------------------------------------------------------------------ AF1 AToTwoF1(AF1 c){return sqrt(c);} AF2 AToTwoF2(AF2 c){return sqrt(c);} AF3 AToTwoF3(AF3 c){return sqrt(c);} //------------------------------------------------------------------------------------------------------------------------------ AF1 AToThreeF1(AF1 c){return pow(c,AF1_(1.0/3.0));} AF2 AToThreeF2(AF2 c){return pow(c,AF2_(1.0/3.0));} AF3 AToThreeF3(AF3 c){return pow(c,AF3_(1.0/3.0));} #endif //============================================================================================================================== #if 1 // Unfortunately median won't work here. AF1 AFrom709F1(AF1 c){AF3 j=AF3(0.081/4.5,1.0/4.5,1.0/0.45);AF2 k=AF2(1.0/1.099,0.099/1.099); return AZolSelF1(AZolSignedF1(c-j.x ),c*j.y ,pow(c*k.x +k.y ,j.z ));} AF2 AFrom709F2(AF2 c){AF3 j=AF3(0.081/4.5,1.0/4.5,1.0/0.45);AF2 k=AF2(1.0/1.099,0.099/1.099); return AZolSelF2(AZolSignedF2(c-j.xx ),c*j.yy ,pow(c*k.xx +k.yy ,j.zz ));} AF3 AFrom709F3(AF3 c){AF3 j=AF3(0.081/4.5,1.0/4.5,1.0/0.45);AF2 k=AF2(1.0/1.099,0.099/1.099); return AZolSelF3(AZolSignedF3(c-j.xxx),c*j.yyy,pow(c*k.xxx+k.yyy,j.zzz));} //------------------------------------------------------------------------------------------------------------------------------ AF1 AFromGammaF1(AF1 c,AF1 x){return pow(c,AF1_(x));} AF2 AFromGammaF2(AF2 c,AF1 x){return pow(c,AF2_(x));} AF3 AFromGammaF3(AF3 c,AF1 x){return pow(c,AF3_(x));} //------------------------------------------------------------------------------------------------------------------------------ AF1 AFromPqF1(AF1 x){AF1 p=pow(x,AF1_(0.0126833)); return pow(ASatF1(p-AF1_(0.835938))/(AF1_(18.8516)-AF1_(18.6875)*p),AF1_(6.27739));} AF2 AFromPqF1(AF2 x){AF2 p=pow(x,AF2_(0.0126833)); return pow(ASatF2(p-AF2_(0.835938))/(AF2_(18.8516)-AF2_(18.6875)*p),AF2_(6.27739));} AF3 AFromPqF1(AF3 x){AF3 p=pow(x,AF3_(0.0126833)); return pow(ASatF3(p-AF3_(0.835938))/(AF3_(18.8516)-AF3_(18.6875)*p),AF3_(6.27739));} //------------------------------------------------------------------------------------------------------------------------------ // Unfortunately median won't work here. AF1 AFromSrgbF1(AF1 c){AF3 j=AF3(0.04045/12.92,1.0/12.92,2.4);AF2 k=AF2(1.0/1.055,0.055/1.055); return AZolSelF1(AZolSignedF1(c-j.x ),c*j.y ,pow(c*k.x +k.y ,j.z ));} AF2 AFromSrgbF2(AF2 c){AF3 j=AF3(0.04045/12.92,1.0/12.92,2.4);AF2 k=AF2(1.0/1.055,0.055/1.055); return AZolSelF2(AZolSignedF2(c-j.xx ),c*j.yy ,pow(c*k.xx +k.yy ,j.zz ));} AF3 AFromSrgbF3(AF3 c){AF3 j=AF3(0.04045/12.92,1.0/12.92,2.4);AF2 k=AF2(1.0/1.055,0.055/1.055); return AZolSelF3(AZolSignedF3(c-j.xxx),c*j.yyy,pow(c*k.xxx+k.yyy,j.zzz));} //------------------------------------------------------------------------------------------------------------------------------ AF1 AFromTwoF1(AF1 c){return c*c;} AF2 AFromTwoF2(AF2 c){return c*c;} AF3 AFromTwoF3(AF3 c){return c*c;} //------------------------------------------------------------------------------------------------------------------------------ AF1 AFromThreeF1(AF1 c){return c*c*c;} AF2 AFromThreeF2(AF2 c){return c*c*c;} AF3 AFromThreeF3(AF3 c){return c*c*c;} #endif //============================================================================================================================== #ifdef A_HALF AH1 ATo709H1(AH1 c){AH3 j=AH3(0.018*4.5,4.5,0.45);AH2 k=AH2(1.099,-0.099); return clamp(j.x ,c*j.y ,pow(c,j.z )*k.x +k.y );} AH2 ATo709H2(AH2 c){AH3 j=AH3(0.018*4.5,4.5,0.45);AH2 k=AH2(1.099,-0.099); return clamp(j.xx ,c*j.yy ,pow(c,j.zz )*k.xx +k.yy );} AH3 ATo709H3(AH3 c){AH3 j=AH3(0.018*4.5,4.5,0.45);AH2 k=AH2(1.099,-0.099); return clamp(j.xxx,c*j.yyy,pow(c,j.zzz)*k.xxx+k.yyy);} //------------------------------------------------------------------------------------------------------------------------------ AH1 AToGammaH1(AH1 c,AH1 rcpX){return pow(c,AH1_(rcpX));} AH2 AToGammaH2(AH2 c,AH1 rcpX){return pow(c,AH2_(rcpX));} AH3 AToGammaH3(AH3 c,AH1 rcpX){return pow(c,AH3_(rcpX));} //------------------------------------------------------------------------------------------------------------------------------ AH1 AToSrgbH1(AH1 c){AH3 j=AH3(0.0031308*12.92,12.92,1.0/2.4);AH2 k=AH2(1.055,-0.055); return clamp(j.x ,c*j.y ,pow(c,j.z )*k.x +k.y );} AH2 AToSrgbH2(AH2 c){AH3 j=AH3(0.0031308*12.92,12.92,1.0/2.4);AH2 k=AH2(1.055,-0.055); return clamp(j.xx ,c*j.yy ,pow(c,j.zz )*k.xx +k.yy );} AH3 AToSrgbH3(AH3 c){AH3 j=AH3(0.0031308*12.92,12.92,1.0/2.4);AH2 k=AH2(1.055,-0.055); return clamp(j.xxx,c*j.yyy,pow(c,j.zzz)*k.xxx+k.yyy);} //------------------------------------------------------------------------------------------------------------------------------ AH1 AToTwoH1(AH1 c){return sqrt(c);} AH2 AToTwoH2(AH2 c){return sqrt(c);} AH3 AToTwoH3(AH3 c){return sqrt(c);} //------------------------------------------------------------------------------------------------------------------------------ AH1 AToThreeF1(AH1 c){return pow(c,AH1_(1.0/3.0));} AH2 AToThreeF2(AH2 c){return pow(c,AH2_(1.0/3.0));} AH3 AToThreeF3(AH3 c){return pow(c,AH3_(1.0/3.0));} #endif //============================================================================================================================== #ifdef A_HALF AH1 AFrom709H1(AH1 c){AH3 j=AH3(0.081/4.5,1.0/4.5,1.0/0.45);AH2 k=AH2(1.0/1.099,0.099/1.099); return AZolSelH1(AZolSignedH1(c-j.x ),c*j.y ,pow(c*k.x +k.y ,j.z ));} AH2 AFrom709H2(AH2 c){AH3 j=AH3(0.081/4.5,1.0/4.5,1.0/0.45);AH2 k=AH2(1.0/1.099,0.099/1.099); return AZolSelH2(AZolSignedH2(c-j.xx ),c*j.yy ,pow(c*k.xx +k.yy ,j.zz ));} AH3 AFrom709H3(AH3 c){AH3 j=AH3(0.081/4.5,1.0/4.5,1.0/0.45);AH2 k=AH2(1.0/1.099,0.099/1.099); return AZolSelH3(AZolSignedH3(c-j.xxx),c*j.yyy,pow(c*k.xxx+k.yyy,j.zzz));} //------------------------------------------------------------------------------------------------------------------------------ AH1 AFromGammaH1(AH1 c,AH1 x){return pow(c,AH1_(x));} AH2 AFromGammaH2(AH2 c,AH1 x){return pow(c,AH2_(x));} AH3 AFromGammaH3(AH3 c,AH1 x){return pow(c,AH3_(x));} //------------------------------------------------------------------------------------------------------------------------------ AH1 AHromSrgbF1(AH1 c){AH3 j=AH3(0.04045/12.92,1.0/12.92,2.4);AH2 k=AH2(1.0/1.055,0.055/1.055); return AZolSelH1(AZolSignedH1(c-j.x ),c*j.y ,pow(c*k.x +k.y ,j.z ));} AH2 AHromSrgbF2(AH2 c){AH3 j=AH3(0.04045/12.92,1.0/12.92,2.4);AH2 k=AH2(1.0/1.055,0.055/1.055); return AZolSelH2(AZolSignedH2(c-j.xx ),c*j.yy ,pow(c*k.xx +k.yy ,j.zz ));} AH3 AHromSrgbF3(AH3 c){AH3 j=AH3(0.04045/12.92,1.0/12.92,2.4);AH2 k=AH2(1.0/1.055,0.055/1.055); return AZolSelH3(AZolSignedH3(c-j.xxx),c*j.yyy,pow(c*k.xxx+k.yyy,j.zzz));} //------------------------------------------------------------------------------------------------------------------------------ AH1 AFromTwoH1(AH1 c){return c*c;} AH2 AFromTwoH2(AH2 c){return c*c;} AH3 AFromTwoH3(AH3 c){return c*c;} //------------------------------------------------------------------------------------------------------------------------------ AH1 AFromThreeH1(AH1 c){return c*c*c;} AH2 AFromThreeH2(AH2 c){return c*c*c;} AH3 AFromThreeH3(AH3 c){return c*c*c;} #endif //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // CS REMAP //============================================================================================================================== // Simple remap 64x1 to 8x8 with rotated 2x2 pixel quads in quad linear. // 543210 // ====== // ..xxx. // yy...y AU2 ARmp8x8(AU1 a){return AU2(ABfe(a,1u,3u),ABfiM(ABfe(a,3u,3u),a,1u));} //============================================================================================================================== // More complex remap 64x1 to 8x8 which is necessary for 2D wave reductions. // 543210 // ====== // .xx..x // y..yy. // Details, // LANE TO 8x8 MAPPING // =================== // 00 01 08 09 10 11 18 19 // 02 03 0a 0b 12 13 1a 1b // 04 05 0c 0d 14 15 1c 1d // 06 07 0e 0f 16 17 1e 1f // 20 21 28 29 30 31 38 39 // 22 23 2a 2b 32 33 3a 3b // 24 25 2c 2d 34 35 3c 3d // 26 27 2e 2f 36 37 3e 3f AU2 ARmpRed8x8(AU1 a){return AU2(ABfiM(ABfe(a,2u,3u),a,1u),ABfiM(ABfe(a,3u,3u),ABfe(a,1u,2u),2u));} //============================================================================================================================== #ifdef A_HALF AW2 ARmp8x8H(AU1 a){return AW2(ABfe(a,1u,3u),ABfiM(ABfe(a,3u,3u),a,1u));} AW2 ARmpRed8x8H(AU1 a){return AW2(ABfiM(ABfe(a,2u,3u),a,1u),ABfiM(ABfe(a,3u,3u),ABfe(a,1u,2u),2u));} #endif #endif //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // // REFERENCE // //------------------------------------------------------------------------------------------------------------------------------ // IEEE FLOAT RULES // ================ // - saturate(NaN)=0, saturate(-INF)=0, saturate(+INF)=1 // - {+/-}0 * {+/-}INF = NaN // - -INF + (+INF) = NaN // - {+/-}0 / {+/-}0 = NaN // - {+/-}INF / {+/-}INF = NaN // - a<(-0) := sqrt(a) = NaN (a=-0.0 won't NaN) // - 0 == -0 // - 4/0 = +INF // - 4/-0 = -INF // - 4+INF = +INF // - 4-INF = -INF // - 4*(+INF) = +INF // - 4*(-INF) = -INF // - -4*(+INF) = -INF // - sqrt(+INF) = +INF //------------------------------------------------------------------------------------------------------------------------------ // FP16 ENCODING // ============= // fedcba9876543210 // ---------------- // ......mmmmmmmmmm 10-bit mantissa (encodes 11-bit 0.5 to 1.0 except for denormals) // .eeeee.......... 5-bit exponent // .00000.......... denormals // .00001.......... -14 exponent // .11110.......... 15 exponent // .111110000000000 infinity // .11111nnnnnnnnnn NaN with n!=0 // s............... sign //------------------------------------------------------------------------------------------------------------------------------ // FP16/INT16 ALIASING DENORMAL // ============================ // 11-bit unsigned integers alias with half float denormal/normal values, // 1 = 2^(-24) = 1/16777216 ....................... first denormal value // 2 = 2^(-23) // ... // 1023 = 2^(-14)*(1-2^(-10)) = 2^(-14)*(1-1/1024) ... last denormal value // 1024 = 2^(-14) = 1/16384 .......................... first normal value that still maps to integers // 2047 .............................................. last normal value that still maps to integers // Scaling limits, // 2^15 = 32768 ...................................... largest power of 2 scaling // Largest pow2 conversion mapping is at *32768, // 1 : 2^(-9) = 1/512 // 2 : 1/256 // 4 : 1/128 // 8 : 1/64 // 16 : 1/32 // 32 : 1/16 // 64 : 1/8 // 128 : 1/4 // 256 : 1/2 // 512 : 1 // 1024 : 2 // 2047 : a little less than 4 //============================================================================================================================== //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // // // GPU/CPU PORTABILITY // // //------------------------------------------------------------------------------------------------------------------------------ // This is the GPU implementation. // See the CPU implementation for docs. //============================================================================================================================== #ifdef A_GPU #define A_TRUE true #define A_FALSE false #define A_STATIC //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // VECTOR ARGUMENT/RETURN/INITIALIZATION PORTABILITY //============================================================================================================================== #define retAD2 AD2 #define retAD3 AD3 #define retAD4 AD4 #define retAF2 AF2 #define retAF3 AF3 #define retAF4 AF4 #define retAL2 AL2 #define retAL3 AL3 #define retAL4 AL4 #define retAU2 AU2 #define retAU3 AU3 #define retAU4 AU4 //------------------------------------------------------------------------------------------------------------------------------ #define inAD2 in AD2 #define inAD3 in AD3 #define inAD4 in AD4 #define inAF2 in AF2 #define inAF3 in AF3 #define inAF4 in AF4 #define inAL2 in AL2 #define inAL3 in AL3 #define inAL4 in AL4 #define inAU2 in AU2 #define inAU3 in AU3 #define inAU4 in AU4 //------------------------------------------------------------------------------------------------------------------------------ #define inoutAD2 inout AD2 #define inoutAD3 inout AD3 #define inoutAD4 inout AD4 #define inoutAF2 inout AF2 #define inoutAF3 inout AF3 #define inoutAF4 inout AF4 #define inoutAL2 inout AL2 #define inoutAL3 inout AL3 #define inoutAL4 inout AL4 #define inoutAU2 inout AU2 #define inoutAU3 inout AU3 #define inoutAU4 inout AU4 //------------------------------------------------------------------------------------------------------------------------------ #define outAD2 out AD2 #define outAD3 out AD3 #define outAD4 out AD4 #define outAF2 out AF2 #define outAF3 out AF3 #define outAF4 out AF4 #define outAL2 out AL2 #define outAL3 out AL3 #define outAL4 out AL4 #define outAU2 out AU2 #define outAU3 out AU3 #define outAU4 out AU4 //------------------------------------------------------------------------------------------------------------------------------ #define varAD2(x) AD2 x #define varAD3(x) AD3 x #define varAD4(x) AD4 x #define varAF2(x) AF2 x #define varAF3(x) AF3 x #define varAF4(x) AF4 x #define varAL2(x) AL2 x #define varAL3(x) AL3 x #define varAL4(x) AL4 x #define varAU2(x) AU2 x #define varAU3(x) AU3 x #define varAU4(x) AU4 x //------------------------------------------------------------------------------------------------------------------------------ #define initAD2(x,y) AD2(x,y) #define initAD3(x,y,z) AD3(x,y,z) #define initAD4(x,y,z,w) AD4(x,y,z,w) #define initAF2(x,y) AF2(x,y) #define initAF3(x,y,z) AF3(x,y,z) #define initAF4(x,y,z,w) AF4(x,y,z,w) #define initAL2(x,y) AL2(x,y) #define initAL3(x,y,z) AL3(x,y,z) #define initAL4(x,y,z,w) AL4(x,y,z,w) #define initAU2(x,y) AU2(x,y) #define initAU3(x,y,z) AU3(x,y,z) #define initAU4(x,y,z,w) AU4(x,y,z,w) //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // SCALAR RETURN OPS //============================================================================================================================== #define AAbsD1(a) abs(AD1(a)) #define AAbsF1(a) abs(AF1(a)) //------------------------------------------------------------------------------------------------------------------------------ #define ACosD1(a) cos(AD1(a)) #define ACosF1(a) cos(AF1(a)) //------------------------------------------------------------------------------------------------------------------------------ #define ADotD2(a,b) dot(AD2(a),AD2(b)) #define ADotD3(a,b) dot(AD3(a),AD3(b)) #define ADotD4(a,b) dot(AD4(a),AD4(b)) #define ADotF2(a,b) dot(AF2(a),AF2(b)) #define ADotF3(a,b) dot(AF3(a),AF3(b)) #define ADotF4(a,b) dot(AF4(a),AF4(b)) //------------------------------------------------------------------------------------------------------------------------------ #define AExp2D1(a) exp2(AD1(a)) #define AExp2F1(a) exp2(AF1(a)) //------------------------------------------------------------------------------------------------------------------------------ #define AFloorD1(a) floor(AD1(a)) #define AFloorF1(a) floor(AF1(a)) //------------------------------------------------------------------------------------------------------------------------------ #define ALog2D1(a) log2(AD1(a)) #define ALog2F1(a) log2(AF1(a)) //------------------------------------------------------------------------------------------------------------------------------ #define AMaxD1(a,b) max(a,b) #define AMaxF1(a,b) max(a,b) #define AMaxL1(a,b) max(a,b) #define AMaxU1(a,b) max(a,b) //------------------------------------------------------------------------------------------------------------------------------ #define AMinD1(a,b) min(a,b) #define AMinF1(a,b) min(a,b) #define AMinL1(a,b) min(a,b) #define AMinU1(a,b) min(a,b) //------------------------------------------------------------------------------------------------------------------------------ #define ASinD1(a) sin(AD1(a)) #define ASinF1(a) sin(AF1(a)) //------------------------------------------------------------------------------------------------------------------------------ #define ASqrtD1(a) sqrt(AD1(a)) #define ASqrtF1(a) sqrt(AF1(a)) //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // SCALAR RETURN OPS - DEPENDENT //============================================================================================================================== #define APowD1(a,b) pow(AD1(a),AF1(b)) #define APowF1(a,b) pow(AF1(a),AF1(b)) //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // VECTOR OPS //------------------------------------------------------------------------------------------------------------------------------ // These are added as needed for production or prototyping, so not necessarily a complete set. // They follow a convention of taking in a destination and also returning the destination value to increase utility. //============================================================================================================================== #ifdef A_DUBL AD2 opAAbsD2(outAD2 d,inAD2 a){d=abs(a);return d;} AD3 opAAbsD3(outAD3 d,inAD3 a){d=abs(a);return d;} AD4 opAAbsD4(outAD4 d,inAD4 a){d=abs(a);return d;} //------------------------------------------------------------------------------------------------------------------------------ AD2 opAAddD2(outAD2 d,inAD2 a,inAD2 b){d=a+b;return d;} AD3 opAAddD3(outAD3 d,inAD3 a,inAD3 b){d=a+b;return d;} AD4 opAAddD4(outAD4 d,inAD4 a,inAD4 b){d=a+b;return d;} //------------------------------------------------------------------------------------------------------------------------------ AD2 opAAddOneD2(outAD2 d,inAD2 a,AD1 b){d=a+AD2_(b);return d;} AD3 opAAddOneD3(outAD3 d,inAD3 a,AD1 b){d=a+AD3_(b);return d;} AD4 opAAddOneD4(outAD4 d,inAD4 a,AD1 b){d=a+AD4_(b);return d;} //------------------------------------------------------------------------------------------------------------------------------ AD2 opACpyD2(outAD2 d,inAD2 a){d=a;return d;} AD3 opACpyD3(outAD3 d,inAD3 a){d=a;return d;} AD4 opACpyD4(outAD4 d,inAD4 a){d=a;return d;} //------------------------------------------------------------------------------------------------------------------------------ AD2 opALerpD2(outAD2 d,inAD2 a,inAD2 b,inAD2 c){d=ALerpD2(a,b,c);return d;} AD3 opALerpD3(outAD3 d,inAD3 a,inAD3 b,inAD3 c){d=ALerpD3(a,b,c);return d;} AD4 opALerpD4(outAD4 d,inAD4 a,inAD4 b,inAD4 c){d=ALerpD4(a,b,c);return d;} //------------------------------------------------------------------------------------------------------------------------------ AD2 opALerpOneD2(outAD2 d,inAD2 a,inAD2 b,AD1 c){d=ALerpD2(a,b,AD2_(c));return d;} AD3 opALerpOneD3(outAD3 d,inAD3 a,inAD3 b,AD1 c){d=ALerpD3(a,b,AD3_(c));return d;} AD4 opALerpOneD4(outAD4 d,inAD4 a,inAD4 b,AD1 c){d=ALerpD4(a,b,AD4_(c));return d;} //------------------------------------------------------------------------------------------------------------------------------ AD2 opAMaxD2(outAD2 d,inAD2 a,inAD2 b){d=max(a,b);return d;} AD3 opAMaxD3(outAD3 d,inAD3 a,inAD3 b){d=max(a,b);return d;} AD4 opAMaxD4(outAD4 d,inAD4 a,inAD4 b){d=max(a,b);return d;} //------------------------------------------------------------------------------------------------------------------------------ AD2 opAMinD2(outAD2 d,inAD2 a,inAD2 b){d=min(a,b);return d;} AD3 opAMinD3(outAD3 d,inAD3 a,inAD3 b){d=min(a,b);return d;} AD4 opAMinD4(outAD4 d,inAD4 a,inAD4 b){d=min(a,b);return d;} //------------------------------------------------------------------------------------------------------------------------------ AD2 opAMulD2(outAD2 d,inAD2 a,inAD2 b){d=a*b;return d;} AD3 opAMulD3(outAD3 d,inAD3 a,inAD3 b){d=a*b;return d;} AD4 opAMulD4(outAD4 d,inAD4 a,inAD4 b){d=a*b;return d;} //------------------------------------------------------------------------------------------------------------------------------ AD2 opAMulOneD2(outAD2 d,inAD2 a,AD1 b){d=a*AD2_(b);return d;} AD3 opAMulOneD3(outAD3 d,inAD3 a,AD1 b){d=a*AD3_(b);return d;} AD4 opAMulOneD4(outAD4 d,inAD4 a,AD1 b){d=a*AD4_(b);return d;} //------------------------------------------------------------------------------------------------------------------------------ AD2 opANegD2(outAD2 d,inAD2 a){d=-a;return d;} AD3 opANegD3(outAD3 d,inAD3 a){d=-a;return d;} AD4 opANegD4(outAD4 d,inAD4 a){d=-a;return d;} //------------------------------------------------------------------------------------------------------------------------------ AD2 opARcpD2(outAD2 d,inAD2 a){d=ARcpD2(a);return d;} AD3 opARcpD3(outAD3 d,inAD3 a){d=ARcpD3(a);return d;} AD4 opARcpD4(outAD4 d,inAD4 a){d=ARcpD4(a);return d;} #endif //============================================================================================================================== AF2 opAAbsF2(outAF2 d,inAF2 a){d=abs(a);return d;} AF3 opAAbsF3(outAF3 d,inAF3 a){d=abs(a);return d;} AF4 opAAbsF4(outAF4 d,inAF4 a){d=abs(a);return d;} //------------------------------------------------------------------------------------------------------------------------------ AF2 opAAddF2(outAF2 d,inAF2 a,inAF2 b){d=a+b;return d;} AF3 opAAddF3(outAF3 d,inAF3 a,inAF3 b){d=a+b;return d;} AF4 opAAddF4(outAF4 d,inAF4 a,inAF4 b){d=a+b;return d;} //------------------------------------------------------------------------------------------------------------------------------ AF2 opAAddOneF2(outAF2 d,inAF2 a,AF1 b){d=a+AF2_(b);return d;} AF3 opAAddOneF3(outAF3 d,inAF3 a,AF1 b){d=a+AF3_(b);return d;} AF4 opAAddOneF4(outAF4 d,inAF4 a,AF1 b){d=a+AF4_(b);return d;} //------------------------------------------------------------------------------------------------------------------------------ AF2 opACpyF2(outAF2 d,inAF2 a){d=a;return d;} AF3 opACpyF3(outAF3 d,inAF3 a){d=a;return d;} AF4 opACpyF4(outAF4 d,inAF4 a){d=a;return d;} //------------------------------------------------------------------------------------------------------------------------------ AF2 opALerpF2(outAF2 d,inAF2 a,inAF2 b,inAF2 c){d=ALerpF2(a,b,c);return d;} AF3 opALerpF3(outAF3 d,inAF3 a,inAF3 b,inAF3 c){d=ALerpF3(a,b,c);return d;} AF4 opALerpF4(outAF4 d,inAF4 a,inAF4 b,inAF4 c){d=ALerpF4(a,b,c);return d;} //------------------------------------------------------------------------------------------------------------------------------ AF2 opALerpOneF2(outAF2 d,inAF2 a,inAF2 b,AF1 c){d=ALerpF2(a,b,AF2_(c));return d;} AF3 opALerpOneF3(outAF3 d,inAF3 a,inAF3 b,AF1 c){d=ALerpF3(a,b,AF3_(c));return d;} AF4 opALerpOneF4(outAF4 d,inAF4 a,inAF4 b,AF1 c){d=ALerpF4(a,b,AF4_(c));return d;} //------------------------------------------------------------------------------------------------------------------------------ AF2 opAMaxF2(outAF2 d,inAF2 a,inAF2 b){d=max(a,b);return d;} AF3 opAMaxF3(outAF3 d,inAF3 a,inAF3 b){d=max(a,b);return d;} AF4 opAMaxF4(outAF4 d,inAF4 a,inAF4 b){d=max(a,b);return d;} //------------------------------------------------------------------------------------------------------------------------------ AF2 opAMinF2(outAF2 d,inAF2 a,inAF2 b){d=min(a,b);return d;} AF3 opAMinF3(outAF3 d,inAF3 a,inAF3 b){d=min(a,b);return d;} AF4 opAMinF4(outAF4 d,inAF4 a,inAF4 b){d=min(a,b);return d;} //------------------------------------------------------------------------------------------------------------------------------ AF2 opAMulF2(outAF2 d,inAF2 a,inAF2 b){d=a*b;return d;} AF3 opAMulF3(outAF3 d,inAF3 a,inAF3 b){d=a*b;return d;} AF4 opAMulF4(outAF4 d,inAF4 a,inAF4 b){d=a*b;return d;} //------------------------------------------------------------------------------------------------------------------------------ AF2 opAMulOneF2(outAF2 d,inAF2 a,AF1 b){d=a*AF2_(b);return d;} AF3 opAMulOneF3(outAF3 d,inAF3 a,AF1 b){d=a*AF3_(b);return d;} AF4 opAMulOneF4(outAF4 d,inAF4 a,AF1 b){d=a*AF4_(b);return d;} //------------------------------------------------------------------------------------------------------------------------------ AF2 opANegF2(outAF2 d,inAF2 a){d=-a;return d;} AF3 opANegF3(outAF3 d,inAF3 a){d=-a;return d;} AF4 opANegF4(outAF4 d,inAF4 a){d=-a;return d;} //------------------------------------------------------------------------------------------------------------------------------ AF2 opARcpF2(outAF2 d,inAF2 a){d=ARcpF2(a);return d;} AF3 opARcpF3(outAF3 d,inAF3 a){d=ARcpF3(a);return d;} AF4 opARcpF4(outAF4 d,inAF4 a){d=ARcpF4(a);return d;} #endif AF4 FsrRcasLoadF(ASU2 p) { return AF4(texture(texture0, vec2(p) / dstSize)); } void FsrRcasInputF(inout AF1 r,inout AF1 g,inout AF1 b) { } //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // // // AMD FidelityFX SUPER RESOLUTION [FSR 1] ::: SPATIAL SCALING & EXTRAS - v1.20210629 // // //------------------------------------------------------------------------------------------------------------------------------ //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //------------------------------------------------------------------------------------------------------------------------------ // FidelityFX Super Resolution Sample // // Copyright (c) 2021 Advanced Micro Devices, Inc. All rights reserved. // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files(the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and / or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions : // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. //------------------------------------------------------------------------------------------------------------------------------ //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //------------------------------------------------------------------------------------------------------------------------------ // ABOUT // ===== // FSR is a collection of algorithms relating to generating a higher resolution image. // This specific header focuses on single-image non-temporal image scaling, and related tools. // // The core functions are EASU and RCAS: // [EASU] Edge Adaptive Spatial Upsampling ....... 1x to 4x area range spatial scaling, clamped adaptive elliptical filter. // [RCAS] Robust Contrast Adaptive Sharpening .... A non-scaling variation on CAS. // RCAS needs to be applied after EASU as a separate pass. // // Optional utility functions are: // [LFGA] Linear Film Grain Applicator ........... Tool to apply film grain after scaling. // [SRTM] Simple Reversible Tone-Mapper .......... Linear HDR {0 to FP16_MAX} to {0 to 1} and back. // [TEPD] Temporal Energy Preserving Dither ...... Temporally energy preserving dithered {0 to 1} linear to gamma 2.0 conversion. // See each individual sub-section for inline documentation. //------------------------------------------------------------------------------------------------------------------------------ //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //------------------------------------------------------------------------------------------------------------------------------ // FUNCTION PERMUTATIONS // ===================== // *F() ..... Single item computation with 32-bit. // *H() ..... Single item computation with 16-bit, with packing (aka two 16-bit ops in parallel) when possible. // *Hx2() ... Processing two items in parallel with 16-bit, easier packing. // Not all interfaces in this file have a *Hx2() form. //============================================================================================================================== //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // // FSR - [EASU] EDGE ADAPTIVE SPATIAL UPSAMPLING // //------------------------------------------------------------------------------------------------------------------------------ // EASU provides a high quality spatial-only scaling at relatively low cost. // Meaning EASU is appropiate for laptops and other low-end GPUs. // Quality from 1x to 4x area scaling is good. //------------------------------------------------------------------------------------------------------------------------------ // The scalar uses a modified fast approximation to the standard lanczos(size=2) kernel. // EASU runs in a single pass, so it applies a directionally and anisotropically adaptive radial lanczos. // This is also kept as simple as possible to have minimum runtime. //------------------------------------------------------------------------------------------------------------------------------ // The lanzcos filter has negative lobes, so by itself it will introduce ringing. // To remove all ringing, the algorithm uses the nearest 2x2 input texels as a neighborhood, // and limits output to the minimum and maximum of that neighborhood. //------------------------------------------------------------------------------------------------------------------------------ // Input image requirements: // // Color needs to be encoded as 3 channel[red, green, blue](e.g.XYZ not supported) // Each channel needs to be in the range[0, 1] // Any color primaries are supported // Display / tonemapping curve needs to be as if presenting to sRGB display or similar(e.g.Gamma 2.0) // There should be no banding in the input // There should be no high amplitude noise in the input // There should be no noise in the input that is not at input pixel granularity // For performance purposes, use 32bpp formats //------------------------------------------------------------------------------------------------------------------------------ // Best to apply EASU at the end of the frame after tonemapping // but before film grain or composite of the UI. //------------------------------------------------------------------------------------------------------------------------------ // Example of including this header for D3D HLSL : // // #define A_GPU 1 // #define A_HLSL 1 // #define A_HALF 1 // #include "ffx_a.h" // #define FSR_EASU_H 1 // #define FSR_RCAS_H 1 // //declare input callbacks // #include "ffx_fsr1.h" // // Example of including this header for Vulkan GLSL : // // #define A_GPU 1 // #define A_GLSL 1 // #define A_HALF 1 // #include "ffx_a.h" // #define FSR_EASU_H 1 // #define FSR_RCAS_H 1 // //declare input callbacks // #include "ffx_fsr1.h" // // Example of including this header for Vulkan HLSL : // // #define A_GPU 1 // #define A_HLSL 1 // #define A_HLSL_6_2 1 // #define A_NO_16_BIT_CAST 1 // #define A_HALF 1 // #include "ffx_a.h" // #define FSR_EASU_H 1 // #define FSR_RCAS_H 1 // //declare input callbacks // #include "ffx_fsr1.h" // // Example of declaring the required input callbacks for GLSL : // The callbacks need to gather4 for each color channel using the specified texture coordinate 'p'. // EASU uses gather4 to reduce position computation logic and for free Arrays of Structures to Structures of Arrays conversion. // // AH4 FsrEasuRH(AF2 p){return AH4(textureGather(sampler2D(tex,sam),p,0));} // AH4 FsrEasuGH(AF2 p){return AH4(textureGather(sampler2D(tex,sam),p,1));} // AH4 FsrEasuBH(AF2 p){return AH4(textureGather(sampler2D(tex,sam),p,2));} // ... // The FsrEasuCon function needs to be called from the CPU or GPU to set up constants. // The difference in viewport and input image size is there to support Dynamic Resolution Scaling. // To use FsrEasuCon() on the CPU, define A_CPU before including ffx_a and ffx_fsr1. // Including a GPU example here, the 'con0' through 'con3' values would be stored out to a constant buffer. // AU4 con0,con1,con2,con3; // FsrEasuCon(con0,con1,con2,con3, // 1920.0,1080.0, // Viewport size (top left aligned) in the input image which is to be scaled. // 3840.0,2160.0, // The size of the input image. // 2560.0,1440.0); // The output resolution. //============================================================================================================================== //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // CONSTANT SETUP //============================================================================================================================== // Call to setup required constant values (works on CPU or GPU). A_STATIC void FsrEasuCon( outAU4 con0, outAU4 con1, outAU4 con2, outAU4 con3, // This the rendered image resolution being upscaled AF1 inputViewportInPixelsX, AF1 inputViewportInPixelsY, // This is the resolution of the resource containing the input image (useful for dynamic resolution) AF1 inputSizeInPixelsX, AF1 inputSizeInPixelsY, // This is the display resolution which the input image gets upscaled to AF1 outputSizeInPixelsX, AF1 outputSizeInPixelsY){ // Output integer position to a pixel position in viewport. con0[0]=AU1_AF1(inputViewportInPixelsX*ARcpF1(outputSizeInPixelsX)); con0[1]=AU1_AF1(inputViewportInPixelsY*ARcpF1(outputSizeInPixelsY)); con0[2]=AU1_AF1(AF1_(0.5)*inputViewportInPixelsX*ARcpF1(outputSizeInPixelsX)-AF1_(0.5)); con0[3]=AU1_AF1(AF1_(0.5)*inputViewportInPixelsY*ARcpF1(outputSizeInPixelsY)-AF1_(0.5)); // Viewport pixel position to normalized image space. // This is used to get upper-left of 'F' tap. con1[0]=AU1_AF1(ARcpF1(inputSizeInPixelsX)); con1[1]=AU1_AF1(ARcpF1(inputSizeInPixelsY)); // Centers of gather4, first offset from upper-left of 'F'. // +---+---+ // | | | // +--(0)--+ // | b | c | // +---F---+---+---+ // | e | f | g | h | // +--(1)--+--(2)--+ // | i | j | k | l | // +---+---+---+---+ // | n | o | // +--(3)--+ // | | | // +---+---+ con1[2]=AU1_AF1(AF1_( 1.0)*ARcpF1(inputSizeInPixelsX)); con1[3]=AU1_AF1(AF1_(-1.0)*ARcpF1(inputSizeInPixelsY)); // These are from (0) instead of 'F'. con2[0]=AU1_AF1(AF1_(-1.0)*ARcpF1(inputSizeInPixelsX)); con2[1]=AU1_AF1(AF1_( 2.0)*ARcpF1(inputSizeInPixelsY)); con2[2]=AU1_AF1(AF1_( 1.0)*ARcpF1(inputSizeInPixelsX)); con2[3]=AU1_AF1(AF1_( 2.0)*ARcpF1(inputSizeInPixelsY)); con3[0]=AU1_AF1(AF1_( 0.0)*ARcpF1(inputSizeInPixelsX)); con3[1]=AU1_AF1(AF1_( 4.0)*ARcpF1(inputSizeInPixelsY)); con3[2]=con3[3]=0;} //If the an offset into the input image resource A_STATIC void FsrEasuConOffset( outAU4 con0, outAU4 con1, outAU4 con2, outAU4 con3, // This the rendered image resolution being upscaled AF1 inputViewportInPixelsX, AF1 inputViewportInPixelsY, // This is the resolution of the resource containing the input image (useful for dynamic resolution) AF1 inputSizeInPixelsX, AF1 inputSizeInPixelsY, // This is the display resolution which the input image gets upscaled to AF1 outputSizeInPixelsX, AF1 outputSizeInPixelsY, // This is the input image offset into the resource containing it (useful for dynamic resolution) AF1 inputOffsetInPixelsX, AF1 inputOffsetInPixelsY) { FsrEasuCon(con0, con1, con2, con3, inputViewportInPixelsX, inputViewportInPixelsY, inputSizeInPixelsX, inputSizeInPixelsY, outputSizeInPixelsX, outputSizeInPixelsY); con0[2] = AU1_AF1(AF1_(0.5) * inputViewportInPixelsX * ARcpF1(outputSizeInPixelsX) - AF1_(0.5) + inputOffsetInPixelsX); con0[3] = AU1_AF1(AF1_(0.5) * inputViewportInPixelsY * ARcpF1(outputSizeInPixelsY) - AF1_(0.5) + inputOffsetInPixelsY); } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // NON-PACKED 32-BIT VERSION //============================================================================================================================== #if defined(A_GPU)&&defined(FSR_EASU_F) // Input callback prototypes, need to be implemented by calling shader AF4 FsrEasuRF(AF2 p); AF4 FsrEasuGF(AF2 p); AF4 FsrEasuBF(AF2 p); //------------------------------------------------------------------------------------------------------------------------------ // Filtering for a given tap for the scalar. void FsrEasuTapF( inout AF3 aC, // Accumulated color, with negative lobe. inout AF1 aW, // Accumulated weight. AF2 off, // Pixel offset from resolve position to tap. AF2 dir, // Gradient direction. AF2 len, // Length. AF1 lob, // Negative lobe strength. AF1 clp, // Clipping point. AF3 c){ // Tap color. // Rotate offset by direction. AF2 v; v.x=(off.x*( dir.x))+(off.y*dir.y); v.y=(off.x*(-dir.y))+(off.y*dir.x); // Anisotropy. v*=len; // Compute distance^2. AF1 d2=v.x*v.x+v.y*v.y; // Limit to the window as at corner, 2 taps can easily be outside. d2=min(d2,clp); // Approximation of lancos2 without sin() or rcp(), or sqrt() to get x. // (25/16 * (2/5 * x^2 - 1)^2 - (25/16 - 1)) * (1/4 * x^2 - 1)^2 // |_______________________________________| |_______________| // base window // The general form of the 'base' is, // (a*(b*x^2-1)^2-(a-1)) // Where 'a=1/(2*b-b^2)' and 'b' moves around the negative lobe. AF1 wB=AF1_(2.0/5.0)*d2+AF1_(-1.0); AF1 wA=lob*d2+AF1_(-1.0); wB*=wB; wA*=wA; wB=AF1_(25.0/16.0)*wB+AF1_(-(25.0/16.0-1.0)); AF1 w=wB*wA; // Do weighted average. aC+=c*w;aW+=w;} //------------------------------------------------------------------------------------------------------------------------------ // Accumulate direction and length. void FsrEasuSetF( inout AF2 dir, inout AF1 len, AF2 pp, AP1 biS,AP1 biT,AP1 biU,AP1 biV, AF1 lA,AF1 lB,AF1 lC,AF1 lD,AF1 lE){ // Compute bilinear weight, branches factor out as predicates are compiler time immediates. // s t // u v AF1 w = AF1_(0.0); if(biS)w=(AF1_(1.0)-pp.x)*(AF1_(1.0)-pp.y); if(biT)w= pp.x *(AF1_(1.0)-pp.y); if(biU)w=(AF1_(1.0)-pp.x)* pp.y ; if(biV)w= pp.x * pp.y ; // Direction is the '+' diff. // a // b c d // e // Then takes magnitude from abs average of both sides of 'c'. // Length converts gradient reversal to 0, smoothly to non-reversal at 1, shaped, then adding horz and vert terms. AF1 dc=lD-lC; AF1 cb=lC-lB; AF1 lenX=max(abs(dc),abs(cb)); lenX=APrxLoRcpF1(lenX); AF1 dirX=lD-lB; dir.x+=dirX*w; lenX=ASatF1(abs(dirX)*lenX); lenX*=lenX; len+=lenX*w; // Repeat for the y axis. AF1 ec=lE-lC; AF1 ca=lC-lA; AF1 lenY=max(abs(ec),abs(ca)); lenY=APrxLoRcpF1(lenY); AF1 dirY=lE-lA; dir.y+=dirY*w; lenY=ASatF1(abs(dirY)*lenY); lenY*=lenY; len+=lenY*w;} //------------------------------------------------------------------------------------------------------------------------------ void FsrEasuF( out AF3 pix, AU2 ip, // Integer pixel position in output. AU4 con0, // Constants generated by FsrEasuCon(). AU4 con1, AU4 con2, AU4 con3){ //------------------------------------------------------------------------------------------------------------------------------ // Get position of 'f'. AF2 pp=AF2(ip)*AF2_AU2(con0.xy)+AF2_AU2(con0.zw); AF2 fp=floor(pp); pp-=fp; //------------------------------------------------------------------------------------------------------------------------------ // 12-tap kernel. // b c // e f g h // i j k l // n o // Gather 4 ordering. // a b // r g // For packed FP16, need either {rg} or {ab} so using the following setup for gather in all versions, // a b <- unused (z) // r g // a b a b // r g r g // a b // r g <- unused (z) // Allowing dead-code removal to remove the 'z's. AF2 p0=fp*AF2_AU2(con1.xy)+AF2_AU2(con1.zw); // These are from p0 to avoid pulling two constants on pre-Navi hardware. AF2 p1=p0+AF2_AU2(con2.xy); AF2 p2=p0+AF2_AU2(con2.zw); AF2 p3=p0+AF2_AU2(con3.xy); AF4 bczzR=FsrEasuRF(p0); AF4 bczzG=FsrEasuGF(p0); AF4 bczzB=FsrEasuBF(p0); AF4 ijfeR=FsrEasuRF(p1); AF4 ijfeG=FsrEasuGF(p1); AF4 ijfeB=FsrEasuBF(p1); AF4 klhgR=FsrEasuRF(p2); AF4 klhgG=FsrEasuGF(p2); AF4 klhgB=FsrEasuBF(p2); AF4 zzonR=FsrEasuRF(p3); AF4 zzonG=FsrEasuGF(p3); AF4 zzonB=FsrEasuBF(p3); //------------------------------------------------------------------------------------------------------------------------------ // Simplest multi-channel approximate luma possible (luma times 2, in 2 FMA/MAD). AF4 bczzL=bczzB*AF4_(0.5)+(bczzR*AF4_(0.5)+bczzG); AF4 ijfeL=ijfeB*AF4_(0.5)+(ijfeR*AF4_(0.5)+ijfeG); AF4 klhgL=klhgB*AF4_(0.5)+(klhgR*AF4_(0.5)+klhgG); AF4 zzonL=zzonB*AF4_(0.5)+(zzonR*AF4_(0.5)+zzonG); // Rename. AF1 bL=bczzL.x; AF1 cL=bczzL.y; AF1 iL=ijfeL.x; AF1 jL=ijfeL.y; AF1 fL=ijfeL.z; AF1 eL=ijfeL.w; AF1 kL=klhgL.x; AF1 lL=klhgL.y; AF1 hL=klhgL.z; AF1 gL=klhgL.w; AF1 oL=zzonL.z; AF1 nL=zzonL.w; // Accumulate for bilinear interpolation. AF2 dir=AF2_(0.0); AF1 len=AF1_(0.0); FsrEasuSetF(dir,len,pp,true, false,false,false,bL,eL,fL,gL,jL); FsrEasuSetF(dir,len,pp,false,true ,false,false,cL,fL,gL,hL,kL); FsrEasuSetF(dir,len,pp,false,false,true ,false,fL,iL,jL,kL,nL); FsrEasuSetF(dir,len,pp,false,false,false,true ,gL,jL,kL,lL,oL); //------------------------------------------------------------------------------------------------------------------------------ // Normalize with approximation, and cleanup close to zero. AF2 dir2=dir*dir; AF1 dirR=dir2.x+dir2.y; AP1 zro=dirR w = -m/(n+e+w+s) // 1 == (w*(n+e+w+s)+m)/(4*w+1) -> w = (1-m)/(n+e+w+s-4*1) // Then chooses the 'w' which results in no clipping, limits 'w', and multiplies by the 'sharp' amount. // This solution above has issues with MSAA input as the steps along the gradient cause edge detection issues. // So RCAS uses 4x the maximum and 4x the minimum (depending on equation)in place of the individual taps. // As well as switching from 'm' to either the minimum or maximum (depending on side), to help in energy conservation. // This stabilizes RCAS. // RCAS does a simple highpass which is normalized against the local contrast then shaped, // 0.25 // 0.25 -1 0.25 // 0.25 // This is used as a noise detection filter, to reduce the effect of RCAS on grain, and focus on real edges. // // GLSL example for the required callbacks : // // AH4 FsrRcasLoadH(ASW2 p){return AH4(imageLoad(imgSrc,ASU2(p)));} // void FsrRcasInputH(inout AH1 r,inout AH1 g,inout AH1 b) // { // //do any simple input color conversions here or leave empty if none needed // } // // FsrRcasCon need to be called from the CPU or GPU to set up constants. // Including a GPU example here, the 'con' value would be stored out to a constant buffer. // // AU4 con; // FsrRcasCon(con, // 0.0); // The scale is {0.0 := maximum sharpness, to N>0, where N is the number of stops (halving) of the reduction of sharpness}. // --------------- // RCAS sharpening supports a CAS-like pass-through alpha via, // #define FSR_RCAS_PASSTHROUGH_ALPHA 1 // RCAS also supports a define to enable a more expensive path to avoid some sharpening of noise. // Would suggest it is better to apply film grain after RCAS sharpening (and after scaling) instead of using this define, // #define FSR_RCAS_DENOISE 1 //============================================================================================================================== // This is set at the limit of providing unnatural results for sharpening. #define FSR_RCAS_LIMIT (0.25-(1.0/16.0)) //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // CONSTANT SETUP //============================================================================================================================== // Call to setup required constant values (works on CPU or GPU). A_STATIC void FsrRcasCon( outAU4 con, // The scale is {0.0 := maximum, to N>0, where N is the number of stops (halving) of the reduction of sharpness}. AF1 sharpness){ // Transform from stops to linear value. sharpness=AExp2F1(-sharpness); varAF2(hSharp)=initAF2(sharpness,sharpness); con[0]=AU1_AF1(sharpness); con[1]=AU1_AH2_AF2(hSharp); con[2]=0; con[3]=0;} //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // NON-PACKED 32-BIT VERSION //============================================================================================================================== #if defined(A_GPU)&&defined(FSR_RCAS_F) // Input callback prototypes that need to be implemented by calling shader AF4 FsrRcasLoadF(ASU2 p); void FsrRcasInputF(inout AF1 r,inout AF1 g,inout AF1 b); //------------------------------------------------------------------------------------------------------------------------------ void FsrRcasF( out AF1 pixR, // Output values, non-vector so port between RcasFilter() and RcasFilterH() is easy. out AF1 pixG, out AF1 pixB, #ifdef FSR_RCAS_PASSTHROUGH_ALPHA out AF1 pixA, #endif AU2 ip, // Integer pixel position in output. AU4 con){ // Constant generated by RcasSetup(). // Algorithm uses minimal 3x3 pixel neighborhood. // b // d e f // h ASU2 sp=ASU2(ip); AF3 b=FsrRcasLoadF(sp+ASU2( 0,-1)).rgb; AF3 d=FsrRcasLoadF(sp+ASU2(-1, 0)).rgb; #ifdef FSR_RCAS_PASSTHROUGH_ALPHA AF4 ee=FsrRcasLoadF(sp); AF3 e=ee.rgb;pixA=ee.a; #else AF3 e=FsrRcasLoadF(sp).rgb; #endif AF3 f=FsrRcasLoadF(sp+ASU2( 1, 0)).rgb; AF3 h=FsrRcasLoadF(sp+ASU2( 0, 1)).rgb; // Rename (32-bit) or regroup (16-bit). AF1 bR=b.r; AF1 bG=b.g; AF1 bB=b.b; AF1 dR=d.r; AF1 dG=d.g; AF1 dB=d.b; AF1 eR=e.r; AF1 eG=e.g; AF1 eB=e.b; AF1 fR=f.r; AF1 fG=f.g; AF1 fB=f.b; AF1 hR=h.r; AF1 hG=h.g; AF1 hB=h.b; // Run optional input transform. FsrRcasInputF(bR,bG,bB); FsrRcasInputF(dR,dG,dB); FsrRcasInputF(eR,eG,eB); FsrRcasInputF(fR,fG,fB); FsrRcasInputF(hR,hG,hB); // Luma times 2. AF1 bL=bB*AF1_(0.5)+(bR*AF1_(0.5)+bG); AF1 dL=dB*AF1_(0.5)+(dR*AF1_(0.5)+dG); AF1 eL=eB*AF1_(0.5)+(eR*AF1_(0.5)+eG); AF1 fL=fB*AF1_(0.5)+(fR*AF1_(0.5)+fG); AF1 hL=hB*AF1_(0.5)+(hR*AF1_(0.5)+hG); // Noise detection. AF1 nz=AF1_(0.25)*bL+AF1_(0.25)*dL+AF1_(0.25)*fL+AF1_(0.25)*hL-eL; nz=ASatF1(abs(nz)*APrxMedRcpF1(AMax3F1(AMax3F1(bL,dL,eL),fL,hL)-AMin3F1(AMin3F1(bL,dL,eL),fL,hL))); nz=AF1_(-0.5)*nz+AF1_(1.0); // Min and max of ring. AF1 mn4R=min(AMin3F1(bR,dR,fR),hR); AF1 mn4G=min(AMin3F1(bG,dG,fG),hG); AF1 mn4B=min(AMin3F1(bB,dB,fB),hB); AF1 mx4R=max(AMax3F1(bR,dR,fR),hR); AF1 mx4G=max(AMax3F1(bG,dG,fG),hG); AF1 mx4B=max(AMax3F1(bB,dB,fB),hB); // Immediate constants for peak range. AF2 peakC=AF2(1.0,-1.0*4.0); // Limiters, these need to be high precision RCPs. AF1 hitMinR=mn4R*ARcpF1(AF1_(4.0)*mx4R); AF1 hitMinG=mn4G*ARcpF1(AF1_(4.0)*mx4G); AF1 hitMinB=mn4B*ARcpF1(AF1_(4.0)*mx4B); AF1 hitMaxR=(peakC.x-mx4R)*ARcpF1(AF1_(4.0)*mn4R+peakC.y); AF1 hitMaxG=(peakC.x-mx4G)*ARcpF1(AF1_(4.0)*mn4G+peakC.y); AF1 hitMaxB=(peakC.x-mx4B)*ARcpF1(AF1_(4.0)*mn4B+peakC.y); AF1 lobeR=max(-hitMinR,hitMaxR); AF1 lobeG=max(-hitMinG,hitMaxG); AF1 lobeB=max(-hitMinB,hitMaxB); AF1 lobe=max(AF1_(-FSR_RCAS_LIMIT),min(AMax3F1(lobeR,lobeG,lobeB),AF1_(0.0)))*AF1_AU1(con.x); // Apply noise removal. #ifdef FSR_RCAS_DENOISE lobe*=nz; #endif // Resolve, which needs the medium precision rcp approximation to avoid visible tonality changes. AF1 rcpL=APrxMedRcpF1(AF1_(4.0)*lobe+AF1_(1.0)); pixR=(lobe*bR+lobe*dR+lobe*hR+lobe*fR+eR)*rcpL; pixG=(lobe*bG+lobe*dG+lobe*hG+lobe*fG+eG)*rcpL; pixB=(lobe*bB+lobe*dB+lobe*hB+lobe*fB+eB)*rcpL; return;} #endif //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // NON-PACKED 16-BIT VERSION //============================================================================================================================== #if defined(A_GPU)&&defined(A_HALF)&&defined(FSR_RCAS_H) // Input callback prototypes that need to be implemented by calling shader AH4 FsrRcasLoadH(ASW2 p); void FsrRcasInputH(inout AH1 r,inout AH1 g,inout AH1 b); //------------------------------------------------------------------------------------------------------------------------------ void FsrRcasH( out AH1 pixR, // Output values, non-vector so port between RcasFilter() and RcasFilterH() is easy. out AH1 pixG, out AH1 pixB, #ifdef FSR_RCAS_PASSTHROUGH_ALPHA out AH1 pixA, #endif AU2 ip, // Integer pixel position in output. AU4 con){ // Constant generated by RcasSetup(). // Sharpening algorithm uses minimal 3x3 pixel neighborhood. // b // d e f // h ASW2 sp=ASW2(ip); AH3 b=FsrRcasLoadH(sp+ASW2( 0,-1)).rgb; AH3 d=FsrRcasLoadH(sp+ASW2(-1, 0)).rgb; #ifdef FSR_RCAS_PASSTHROUGH_ALPHA AH4 ee=FsrRcasLoadH(sp); AH3 e=ee.rgb;pixA=ee.a; #else AH3 e=FsrRcasLoadH(sp).rgb; #endif AH3 f=FsrRcasLoadH(sp+ASW2( 1, 0)).rgb; AH3 h=FsrRcasLoadH(sp+ASW2( 0, 1)).rgb; // Rename (32-bit) or regroup (16-bit). AH1 bR=b.r; AH1 bG=b.g; AH1 bB=b.b; AH1 dR=d.r; AH1 dG=d.g; AH1 dB=d.b; AH1 eR=e.r; AH1 eG=e.g; AH1 eB=e.b; AH1 fR=f.r; AH1 fG=f.g; AH1 fB=f.b; AH1 hR=h.r; AH1 hG=h.g; AH1 hB=h.b; // Run optional input transform. FsrRcasInputH(bR,bG,bB); FsrRcasInputH(dR,dG,dB); FsrRcasInputH(eR,eG,eB); FsrRcasInputH(fR,fG,fB); FsrRcasInputH(hR,hG,hB); // Luma times 2. AH1 bL=bB*AH1_(0.5)+(bR*AH1_(0.5)+bG); AH1 dL=dB*AH1_(0.5)+(dR*AH1_(0.5)+dG); AH1 eL=eB*AH1_(0.5)+(eR*AH1_(0.5)+eG); AH1 fL=fB*AH1_(0.5)+(fR*AH1_(0.5)+fG); AH1 hL=hB*AH1_(0.5)+(hR*AH1_(0.5)+hG); // Noise detection. AH1 nz=AH1_(0.25)*bL+AH1_(0.25)*dL+AH1_(0.25)*fL+AH1_(0.25)*hL-eL; nz=ASatH1(abs(nz)*APrxMedRcpH1(AMax3H1(AMax3H1(bL,dL,eL),fL,hL)-AMin3H1(AMin3H1(bL,dL,eL),fL,hL))); nz=AH1_(-0.5)*nz+AH1_(1.0); // Min and max of ring. AH1 mn4R=min(AMin3H1(bR,dR,fR),hR); AH1 mn4G=min(AMin3H1(bG,dG,fG),hG); AH1 mn4B=min(AMin3H1(bB,dB,fB),hB); AH1 mx4R=max(AMax3H1(bR,dR,fR),hR); AH1 mx4G=max(AMax3H1(bG,dG,fG),hG); AH1 mx4B=max(AMax3H1(bB,dB,fB),hB); // Immediate constants for peak range. AH2 peakC=AH2(1.0,-1.0*4.0); // Limiters, these need to be high precision RCPs. AH1 hitMinR=mn4R*ARcpH1(AH1_(4.0)*mx4R); AH1 hitMinG=mn4G*ARcpH1(AH1_(4.0)*mx4G); AH1 hitMinB=mn4B*ARcpH1(AH1_(4.0)*mx4B); AH1 hitMaxR=(peakC.x-mx4R)*ARcpH1(AH1_(4.0)*mn4R+peakC.y); AH1 hitMaxG=(peakC.x-mx4G)*ARcpH1(AH1_(4.0)*mn4G+peakC.y); AH1 hitMaxB=(peakC.x-mx4B)*ARcpH1(AH1_(4.0)*mn4B+peakC.y); AH1 lobeR=max(-hitMinR,hitMaxR); AH1 lobeG=max(-hitMinG,hitMaxG); AH1 lobeB=max(-hitMinB,hitMaxB); AH1 lobe=max(AH1_(-FSR_RCAS_LIMIT),min(AMax3H1(lobeR,lobeG,lobeB),AH1_(0.0)))*AH2_AU1(con.y).x; // Apply noise removal. #ifdef FSR_RCAS_DENOISE lobe*=nz; #endif // Resolve, which needs the medium precision rcp approximation to avoid visible tonality changes. AH1 rcpL=APrxMedRcpH1(AH1_(4.0)*lobe+AH1_(1.0)); pixR=(lobe*bR+lobe*dR+lobe*hR+lobe*fR+eR)*rcpL; pixG=(lobe*bG+lobe*dG+lobe*hG+lobe*fG+eG)*rcpL; pixB=(lobe*bB+lobe*dB+lobe*hB+lobe*fB+eB)*rcpL;} #endif //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // PACKED 16-BIT VERSION //============================================================================================================================== #if defined(A_GPU)&&defined(A_HALF)&&defined(FSR_RCAS_HX2) // Input callback prototypes that need to be implemented by the calling shader AH4 FsrRcasLoadHx2(ASW2 p); void FsrRcasInputHx2(inout AH2 r,inout AH2 g,inout AH2 b); //------------------------------------------------------------------------------------------------------------------------------ // Can be used to convert from packed Structures of Arrays to Arrays of Structures for store. void FsrRcasDepackHx2(out AH4 pix0,out AH4 pix1,AH2 pixR,AH2 pixG,AH2 pixB){ #ifdef A_HLSL // Invoke a slower path for DX only, since it won't allow uninitialized values. pix0.a=pix1.a=0.0; #endif pix0.rgb=AH3(pixR.x,pixG.x,pixB.x); pix1.rgb=AH3(pixR.y,pixG.y,pixB.y);} //------------------------------------------------------------------------------------------------------------------------------ void FsrRcasHx2( // Output values are for 2 8x8 tiles in a 16x8 region. // pix.x = left 8x8 tile // pix.y = right 8x8 tile // This enables later processing to easily be packed as well. out AH2 pixR, out AH2 pixG, out AH2 pixB, #ifdef FSR_RCAS_PASSTHROUGH_ALPHA out AH2 pixA, #endif AU2 ip, // Integer pixel position in output. AU4 con){ // Constant generated by RcasSetup(). // No scaling algorithm uses minimal 3x3 pixel neighborhood. ASW2 sp0=ASW2(ip); AH3 b0=FsrRcasLoadHx2(sp0+ASW2( 0,-1)).rgb; AH3 d0=FsrRcasLoadHx2(sp0+ASW2(-1, 0)).rgb; #ifdef FSR_RCAS_PASSTHROUGH_ALPHA AH4 ee0=FsrRcasLoadHx2(sp0); AH3 e0=ee0.rgb;pixA.r=ee0.a; #else AH3 e0=FsrRcasLoadHx2(sp0).rgb; #endif AH3 f0=FsrRcasLoadHx2(sp0+ASW2( 1, 0)).rgb; AH3 h0=FsrRcasLoadHx2(sp0+ASW2( 0, 1)).rgb; ASW2 sp1=sp0+ASW2(8,0); AH3 b1=FsrRcasLoadHx2(sp1+ASW2( 0,-1)).rgb; AH3 d1=FsrRcasLoadHx2(sp1+ASW2(-1, 0)).rgb; #ifdef FSR_RCAS_PASSTHROUGH_ALPHA AH4 ee1=FsrRcasLoadHx2(sp1); AH3 e1=ee1.rgb;pixA.g=ee1.a; #else AH3 e1=FsrRcasLoadHx2(sp1).rgb; #endif AH3 f1=FsrRcasLoadHx2(sp1+ASW2( 1, 0)).rgb; AH3 h1=FsrRcasLoadHx2(sp1+ASW2( 0, 1)).rgb; // Arrays of Structures to Structures of Arrays conversion. AH2 bR=AH2(b0.r,b1.r); AH2 bG=AH2(b0.g,b1.g); AH2 bB=AH2(b0.b,b1.b); AH2 dR=AH2(d0.r,d1.r); AH2 dG=AH2(d0.g,d1.g); AH2 dB=AH2(d0.b,d1.b); AH2 eR=AH2(e0.r,e1.r); AH2 eG=AH2(e0.g,e1.g); AH2 eB=AH2(e0.b,e1.b); AH2 fR=AH2(f0.r,f1.r); AH2 fG=AH2(f0.g,f1.g); AH2 fB=AH2(f0.b,f1.b); AH2 hR=AH2(h0.r,h1.r); AH2 hG=AH2(h0.g,h1.g); AH2 hB=AH2(h0.b,h1.b); // Run optional input transform. FsrRcasInputHx2(bR,bG,bB); FsrRcasInputHx2(dR,dG,dB); FsrRcasInputHx2(eR,eG,eB); FsrRcasInputHx2(fR,fG,fB); FsrRcasInputHx2(hR,hG,hB); // Luma times 2. AH2 bL=bB*AH2_(0.5)+(bR*AH2_(0.5)+bG); AH2 dL=dB*AH2_(0.5)+(dR*AH2_(0.5)+dG); AH2 eL=eB*AH2_(0.5)+(eR*AH2_(0.5)+eG); AH2 fL=fB*AH2_(0.5)+(fR*AH2_(0.5)+fG); AH2 hL=hB*AH2_(0.5)+(hR*AH2_(0.5)+hG); // Noise detection. AH2 nz=AH2_(0.25)*bL+AH2_(0.25)*dL+AH2_(0.25)*fL+AH2_(0.25)*hL-eL; nz=ASatH2(abs(nz)*APrxMedRcpH2(AMax3H2(AMax3H2(bL,dL,eL),fL,hL)-AMin3H2(AMin3H2(bL,dL,eL),fL,hL))); nz=AH2_(-0.5)*nz+AH2_(1.0); // Min and max of ring. AH2 mn4R=min(AMin3H2(bR,dR,fR),hR); AH2 mn4G=min(AMin3H2(bG,dG,fG),hG); AH2 mn4B=min(AMin3H2(bB,dB,fB),hB); AH2 mx4R=max(AMax3H2(bR,dR,fR),hR); AH2 mx4G=max(AMax3H2(bG,dG,fG),hG); AH2 mx4B=max(AMax3H2(bB,dB,fB),hB); // Immediate constants for peak range. AH2 peakC=AH2(1.0,-1.0*4.0); // Limiters, these need to be high precision RCPs. AH2 hitMinR=mn4R*ARcpH2(AH2_(4.0)*mx4R); AH2 hitMinG=mn4G*ARcpH2(AH2_(4.0)*mx4G); AH2 hitMinB=mn4B*ARcpH2(AH2_(4.0)*mx4B); AH2 hitMaxR=(peakC.x-mx4R)*ARcpH2(AH2_(4.0)*mn4R+peakC.y); AH2 hitMaxG=(peakC.x-mx4G)*ARcpH2(AH2_(4.0)*mn4G+peakC.y); AH2 hitMaxB=(peakC.x-mx4B)*ARcpH2(AH2_(4.0)*mn4B+peakC.y); AH2 lobeR=max(-hitMinR,hitMaxR); AH2 lobeG=max(-hitMinG,hitMaxG); AH2 lobeB=max(-hitMinB,hitMaxB); AH2 lobe=max(AH2_(-FSR_RCAS_LIMIT),min(AMax3H2(lobeR,lobeG,lobeB),AH2_(0.0)))*AH2_(AH2_AU1(con.y).x); // Apply noise removal. #ifdef FSR_RCAS_DENOISE lobe*=nz; #endif // Resolve, which needs the medium precision rcp approximation to avoid visible tonality changes. AH2 rcpL=APrxMedRcpH2(AH2_(4.0)*lobe+AH2_(1.0)); pixR=(lobe*bR+lobe*dR+lobe*hR+lobe*fR+eR)*rcpL; pixG=(lobe*bG+lobe*dG+lobe*hG+lobe*fG+eG)*rcpL; pixB=(lobe*bB+lobe*dB+lobe*hB+lobe*fB+eB)*rcpL;} #endif //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // // FSR - [LFGA] LINEAR FILM GRAIN APPLICATOR // //------------------------------------------------------------------------------------------------------------------------------ // Adding output-resolution film grain after scaling is a good way to mask both rendering and scaling artifacts. // Suggest using tiled blue noise as film grain input, with peak noise frequency set for a specific look and feel. // The 'Lfga*()' functions provide a convenient way to introduce grain. // These functions limit grain based on distance to signal limits. // This is done so that the grain is temporally energy preserving, and thus won't modify image tonality. // Grain application should be done in a linear colorspace. // The grain should be temporally changing, but have a temporal sum per pixel that adds to zero (non-biased). //------------------------------------------------------------------------------------------------------------------------------ // Usage, // FsrLfga*( // color, // In/out linear colorspace color {0 to 1} ranged. // grain, // Per pixel grain texture value {-0.5 to 0.5} ranged, input is 3-channel to support colored grain. // amount); // Amount of grain (0 to 1} ranged. //------------------------------------------------------------------------------------------------------------------------------ // Example if grain texture is monochrome: 'FsrLfgaF(color,AF3_(grain),amount)' //============================================================================================================================== #if defined(A_GPU) // Maximum grain is the minimum distance to the signal limit. void FsrLfgaF(inout AF3 c,AF3 t,AF1 a){c+=(t*AF3_(a))*min(AF3_(1.0)-c,c);} #endif //============================================================================================================================== #if defined(A_GPU)&&defined(A_HALF) // Half precision version (slower). void FsrLfgaH(inout AH3 c,AH3 t,AH1 a){c+=(t*AH3_(a))*min(AH3_(1.0)-c,c);} //------------------------------------------------------------------------------------------------------------------------------ // Packed half precision version (faster). void FsrLfgaHx2(inout AH2 cR,inout AH2 cG,inout AH2 cB,AH2 tR,AH2 tG,AH2 tB,AH1 a){ cR+=(tR*AH2_(a))*min(AH2_(1.0)-cR,cR);cG+=(tG*AH2_(a))*min(AH2_(1.0)-cG,cG);cB+=(tB*AH2_(a))*min(AH2_(1.0)-cB,cB);} #endif //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // // FSR - [SRTM] SIMPLE REVERSIBLE TONE-MAPPER // //------------------------------------------------------------------------------------------------------------------------------ // This provides a way to take linear HDR color {0 to FP16_MAX} and convert it into a temporary {0 to 1} ranged post-tonemapped linear. // The tonemapper preserves RGB ratio, which helps maintain HDR color bleed during filtering. //------------------------------------------------------------------------------------------------------------------------------ // Reversible tonemapper usage, // FsrSrtm*(color); // {0 to FP16_MAX} converted to {0 to 1}. // FsrSrtmInv*(color); // {0 to 1} converted into {0 to 32768, output peak safe for FP16}. //============================================================================================================================== #if defined(A_GPU) void FsrSrtmF(inout AF3 c){c*=AF3_(ARcpF1(AMax3F1(c.r,c.g,c.b)+AF1_(1.0)));} // The extra max solves the c=1.0 case (which is a /0). void FsrSrtmInvF(inout AF3 c){c*=AF3_(ARcpF1(max(AF1_(1.0/32768.0),AF1_(1.0)-AMax3F1(c.r,c.g,c.b))));} #endif //============================================================================================================================== #if defined(A_GPU)&&defined(A_HALF) void FsrSrtmH(inout AH3 c){c*=AH3_(ARcpH1(AMax3H1(c.r,c.g,c.b)+AH1_(1.0)));} void FsrSrtmInvH(inout AH3 c){c*=AH3_(ARcpH1(max(AH1_(1.0/32768.0),AH1_(1.0)-AMax3H1(c.r,c.g,c.b))));} //------------------------------------------------------------------------------------------------------------------------------ void FsrSrtmHx2(inout AH2 cR,inout AH2 cG,inout AH2 cB){ AH2 rcp=ARcpH2(AMax3H2(cR,cG,cB)+AH2_(1.0));cR*=rcp;cG*=rcp;cB*=rcp;} void FsrSrtmInvHx2(inout AH2 cR,inout AH2 cG,inout AH2 cB){ AH2 rcp=ARcpH2(max(AH2_(1.0/32768.0),AH2_(1.0)-AMax3H2(cR,cG,cB)));cR*=rcp;cG*=rcp;cB*=rcp;} #endif //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // // FSR - [TEPD] TEMPORAL ENERGY PRESERVING DITHER // //------------------------------------------------------------------------------------------------------------------------------ // Temporally energy preserving dithered {0 to 1} linear to gamma 2.0 conversion. // Gamma 2.0 is used so that the conversion back to linear is just to square the color. // The conversion comes in 8-bit and 10-bit modes, designed for output to 8-bit UNORM or 10:10:10:2 respectively. // Given good non-biased temporal blue noise as dither input, // the output dither will temporally conserve energy. // This is done by choosing the linear nearest step point instead of perceptual nearest. // See code below for details. //------------------------------------------------------------------------------------------------------------------------------ // DX SPEC RULES FOR FLOAT->UNORM 8-BIT CONVERSION // =============================================== // - Output is 'uint(floor(saturate(n)*255.0+0.5))'. // - Thus rounding is to nearest. // - NaN gets converted to zero. // - INF is clamped to {0.0 to 1.0}. //============================================================================================================================== #if defined(A_GPU) // Hand tuned integer position to dither value, with more values than simple checkerboard. // Only 32-bit has enough precision for this compddation. // Output is {0 to <1}. AF1 FsrTepdDitF(AU2 p,AU1 f){ AF1 x=AF1_(p.x+f); AF1 y=AF1_(p.y); // The 1.61803 golden ratio. AF1 a=AF1_((1.0+sqrt(5.0))/2.0); // Number designed to provide a good visual pattern. AF1 b=AF1_(1.0/3.69); x=x*a+(y*b); return AFractF1(x);} //------------------------------------------------------------------------------------------------------------------------------ // This version is 8-bit gamma 2.0. // The 'c' input is {0 to 1}. // Output is {0 to 1} ready for image store. void FsrTepdC8F(inout AF3 c,AF1 dit){ AF3 n=sqrt(c); n=floor(n*AF3_(255.0))*AF3_(1.0/255.0); AF3 a=n*n; AF3 b=n+AF3_(1.0/255.0);b=b*b; // Ratio of 'a' to 'b' required to produce 'c'. // APrxLoRcpF1() won't work here (at least for very high dynamic ranges). // APrxMedRcpF1() is an IADD,FMA,MUL. AF3 r=(c-b)*APrxMedRcpF3(a-b); // Use the ratio as a cutoff to choose 'a' or 'b'. // AGtZeroF1() is a MUL. c=ASatF3(n+AGtZeroF3(AF3_(dit)-r)*AF3_(1.0/255.0));} //------------------------------------------------------------------------------------------------------------------------------ // This version is 10-bit gamma 2.0. // The 'c' input is {0 to 1}. // Output is {0 to 1} ready for image store. void FsrTepdC10F(inout AF3 c,AF1 dit){ AF3 n=sqrt(c); n=floor(n*AF3_(1023.0))*AF3_(1.0/1023.0); AF3 a=n*n; AF3 b=n+AF3_(1.0/1023.0);b=b*b; AF3 r=(c-b)*APrxMedRcpF3(a-b); c=ASatF3(n+AGtZeroF3(AF3_(dit)-r)*AF3_(1.0/1023.0));} #endif //============================================================================================================================== #if defined(A_GPU)&&defined(A_HALF) AH1 FsrTepdDitH(AU2 p,AU1 f){ AF1 x=AF1_(p.x+f); AF1 y=AF1_(p.y); AF1 a=AF1_((1.0+sqrt(5.0))/2.0); AF1 b=AF1_(1.0/3.69); x=x*a+(y*b); return AH1(AFractF1(x));} //------------------------------------------------------------------------------------------------------------------------------ void FsrTepdC8H(inout AH3 c,AH1 dit){ AH3 n=sqrt(c); n=floor(n*AH3_(255.0))*AH3_(1.0/255.0); AH3 a=n*n; AH3 b=n+AH3_(1.0/255.0);b=b*b; AH3 r=(c-b)*APrxMedRcpH3(a-b); c=ASatH3(n+AGtZeroH3(AH3_(dit)-r)*AH3_(1.0/255.0));} //------------------------------------------------------------------------------------------------------------------------------ void FsrTepdC10H(inout AH3 c,AH1 dit){ AH3 n=sqrt(c); n=floor(n*AH3_(1023.0))*AH3_(1.0/1023.0); AH3 a=n*n; AH3 b=n+AH3_(1.0/1023.0);b=b*b; AH3 r=(c-b)*APrxMedRcpH3(a-b); c=ASatH3(n+AGtZeroH3(AH3_(dit)-r)*AH3_(1.0/1023.0));} //============================================================================================================================== // This computes dither for positions 'p' and 'p+{8,0}'. AH2 FsrTepdDitHx2(AU2 p,AU1 f){ AF2 x; x.x=AF1_(p.x+f); x.y=x.x+AF1_(8.0); AF1 y=AF1_(p.y); AF1 a=AF1_((1.0+sqrt(5.0))/2.0); AF1 b=AF1_(1.0/3.69); x=x*AF2_(a)+AF2_(y*b); return AH2(AFractF2(x));} //------------------------------------------------------------------------------------------------------------------------------ void FsrTepdC8Hx2(inout AH2 cR,inout AH2 cG,inout AH2 cB,AH2 dit){ AH2 nR=sqrt(cR); AH2 nG=sqrt(cG); AH2 nB=sqrt(cB); nR=floor(nR*AH2_(255.0))*AH2_(1.0/255.0); nG=floor(nG*AH2_(255.0))*AH2_(1.0/255.0); nB=floor(nB*AH2_(255.0))*AH2_(1.0/255.0); AH2 aR=nR*nR; AH2 aG=nG*nG; AH2 aB=nB*nB; AH2 bR=nR+AH2_(1.0/255.0);bR=bR*bR; AH2 bG=nG+AH2_(1.0/255.0);bG=bG*bG; AH2 bB=nB+AH2_(1.0/255.0);bB=bB*bB; AH2 rR=(cR-bR)*APrxMedRcpH2(aR-bR); AH2 rG=(cG-bG)*APrxMedRcpH2(aG-bG); AH2 rB=(cB-bB)*APrxMedRcpH2(aB-bB); cR=ASatH2(nR+AGtZeroH2(dit-rR)*AH2_(1.0/255.0)); cG=ASatH2(nG+AGtZeroH2(dit-rG)*AH2_(1.0/255.0)); cB=ASatH2(nB+AGtZeroH2(dit-rB)*AH2_(1.0/255.0));} //------------------------------------------------------------------------------------------------------------------------------ void FsrTepdC10Hx2(inout AH2 cR,inout AH2 cG,inout AH2 cB,AH2 dit){ AH2 nR=sqrt(cR); AH2 nG=sqrt(cG); AH2 nB=sqrt(cB); nR=floor(nR*AH2_(1023.0))*AH2_(1.0/1023.0); nG=floor(nG*AH2_(1023.0))*AH2_(1.0/1023.0); nB=floor(nB*AH2_(1023.0))*AH2_(1.0/1023.0); AH2 aR=nR*nR; AH2 aG=nG*nG; AH2 aB=nB*nB; AH2 bR=nR+AH2_(1.0/1023.0);bR=bR*bR; AH2 bG=nG+AH2_(1.0/1023.0);bG=bG*bG; AH2 bB=nB+AH2_(1.0/1023.0);bB=bB*bB; AH2 rR=(cR-bR)*APrxMedRcpH2(aR-bR); AH2 rG=(cG-bG)*APrxMedRcpH2(aG-bG); AH2 rB=(cB-bB)*APrxMedRcpH2(aB-bB); cR=ASatH2(nR+AGtZeroH2(dit-rR)*AH2_(1.0/1023.0)); cG=ASatH2(nG+AGtZeroH2(dit-rG)*AH2_(1.0/1023.0)); cB=ASatH2(nB+AGtZeroH2(dit-rB)*AH2_(1.0/1023.0));} #endif void main() { AU4 con; FsrRcasCon(con, sharpness); float r = 0, g = 0, b = 0; FsrRcasF(r, g, b, uvec2(fragTexCoord * dstSize), con); finalColor = vec4(r, g, b, 1.0); }