notepad-plus-plus-legacy/scintilla/src/Partitioning.h
2019-05-04 21:14:48 +03:00

205 lines
5.9 KiB
C++

// Scintilla source code edit control
/** @file Partitioning.h
** Data structure used to partition an interval. Used for holding line start/end positions.
**/
// Copyright 1998-2007 by Neil Hodgson <neilh@scintilla.org>
// The License.txt file describes the conditions under which this software may be distributed.
#ifndef PARTITIONING_H
#define PARTITIONING_H
namespace Scintilla {
/// A split vector of integers with a method for adding a value to all elements
/// in a range.
/// Used by the Partitioning class.
template <typename T>
class SplitVectorWithRangeAdd : public SplitVector<T> {
public:
explicit SplitVectorWithRangeAdd(ptrdiff_t growSize_) {
this->SetGrowSize(growSize_);
this->ReAllocate(growSize_);
}
// Deleted so SplitVectorWithRangeAdd objects can not be copied.
SplitVectorWithRangeAdd(const SplitVectorWithRangeAdd &) = delete;
SplitVectorWithRangeAdd(SplitVectorWithRangeAdd &&) = delete;
void operator=(const SplitVectorWithRangeAdd &) = delete;
void operator=(SplitVectorWithRangeAdd &&) = delete;
~SplitVectorWithRangeAdd() {
}
void RangeAddDelta(ptrdiff_t start, ptrdiff_t end, T delta) noexcept {
// end is 1 past end, so end-start is number of elements to change
ptrdiff_t i = 0;
const ptrdiff_t rangeLength = end - start;
ptrdiff_t range1Length = rangeLength;
const ptrdiff_t part1Left = this->part1Length - start;
if (range1Length > part1Left)
range1Length = part1Left;
while (i < range1Length) {
this->body[start++] += delta;
i++;
}
start += this->gapLength;
while (i < rangeLength) {
this->body[start++] += delta;
i++;
}
}
};
/// Divide an interval into multiple partitions.
/// Useful for breaking a document down into sections such as lines.
/// A 0 length interval has a single 0 length partition, numbered 0
/// If interval not 0 length then each partition non-zero length
/// When needed, positions after the interval are considered part of the last partition
/// but the end of the last partition can be found with PositionFromPartition(last+1).
template <typename T>
class Partitioning {
private:
// To avoid calculating all the partition positions whenever any text is inserted
// there may be a step somewhere in the list.
T stepPartition;
T stepLength;
std::unique_ptr<SplitVectorWithRangeAdd<T>> body;
// Move step forward
void ApplyStep(T partitionUpTo) noexcept {
if (stepLength != 0) {
body->RangeAddDelta(stepPartition+1, partitionUpTo + 1, stepLength);
}
stepPartition = partitionUpTo;
if (stepPartition >= body->Length()-1) {
stepPartition = Partitions();
stepLength = 0;
}
}
// Move step backward
void BackStep(T partitionDownTo) noexcept {
if (stepLength != 0) {
body->RangeAddDelta(partitionDownTo+1, stepPartition+1, -stepLength);
}
stepPartition = partitionDownTo;
}
void Allocate(ptrdiff_t growSize) {
body = std::make_unique<SplitVectorWithRangeAdd<T>>(growSize);
stepPartition = 0;
stepLength = 0;
body->Insert(0, 0); // This value stays 0 for ever
body->Insert(1, 0); // This is the end of the first partition and will be the start of the second
}
public:
explicit Partitioning(int growSize) : stepPartition(0), stepLength(0) {
Allocate(growSize);
}
// Deleted so Partitioning objects can not be copied.
Partitioning(const Partitioning &) = delete;
Partitioning(Partitioning &&) = delete;
void operator=(const Partitioning &) = delete;
void operator=(Partitioning &&) = delete;
~Partitioning() {
}
T Partitions() const noexcept {
return static_cast<T>(body->Length())-1;
}
void InsertPartition(T partition, T pos) {
if (stepPartition < partition) {
ApplyStep(partition);
}
body->Insert(partition, pos);
stepPartition++;
}
void SetPartitionStartPosition(T partition, T pos) noexcept {
ApplyStep(partition+1);
if ((partition < 0) || (partition > body->Length())) {
return;
}
body->SetValueAt(partition, pos);
}
void InsertText(T partitionInsert, T delta) {
// Point all the partitions after the insertion point further along in the buffer
if (stepLength != 0) {
if (partitionInsert >= stepPartition) {
// Fill in up to the new insertion point
ApplyStep(partitionInsert);
stepLength += delta;
} else if (partitionInsert >= (stepPartition - body->Length() / 10)) {
// Close to step but before so move step back
BackStep(partitionInsert);
stepLength += delta;
} else {
ApplyStep(Partitions());
stepPartition = partitionInsert;
stepLength = delta;
}
} else {
stepPartition = partitionInsert;
stepLength = delta;
}
}
void RemovePartition(T partition) {
if (partition > stepPartition) {
ApplyStep(partition);
stepPartition--;
} else {
stepPartition--;
}
body->Delete(partition);
}
T PositionFromPartition(T partition) const noexcept {
PLATFORM_ASSERT(partition >= 0);
PLATFORM_ASSERT(partition < body->Length());
const ptrdiff_t lengthBody = body->Length();
if ((partition < 0) || (partition >= lengthBody)) {
return 0;
}
T pos = body->ValueAt(partition);
if (partition > stepPartition)
pos += stepLength;
return pos;
}
/// Return value in range [0 .. Partitions() - 1] even for arguments outside interval
T PartitionFromPosition(T pos) const noexcept {
if (body->Length() <= 1)
return 0;
if (pos >= (PositionFromPartition(Partitions())))
return Partitions() - 1;
T lower = 0;
T upper = Partitions();
do {
const T middle = (upper + lower + 1) / 2; // Round high
T posMiddle = body->ValueAt(middle);
if (middle > stepPartition)
posMiddle += stepLength;
if (pos < posMiddle) {
upper = middle - 1;
} else {
lower = middle;
}
} while (lower < upper);
return lower;
}
void DeleteAll() {
Allocate(body->GetGrowSize());
}
};
}
#endif