// Utf8_16.cxx // Copyright (C) 2002 Scott Kirkwood // // Permission to use, copy, modify, distribute and sell this code // and its documentation for any purpose is hereby granted without fee, // provided that the above copyright notice appear in all copies or // any derived copies. Scott Kirkwood makes no representations // about the suitability of this software for any purpose. // It is provided "as is" without express or implied warranty. //////////////////////////////////////////////////////////////////////////////// // // Modificated 2006 Jens Lorenz // // - Clean up the sources // - Removing UCS-Bug in Utf8_Iter // - Add convert function in Utf8_16_Write //////////////////////////////////////////////////////////////////////////////// #include "Utf8_16.h" #include #include #include "PluginInterface.h" const Utf8_16::utf8 Utf8_16::k_Boms[][3] = { {0x00, 0x00, 0x00}, // Unknown {0xEF, 0xBB, 0xBF}, // UTF8 {0xFE, 0xFF, 0x00}, // Big endian {0xFF, 0xFE, 0x00}, // Little endian }; // ================================================================== Utf8_16_Read::Utf8_16_Read() { m_eEncoding = uni8Bit; m_nBufSize = 0; m_pNewBuf = NULL; m_bFirstRead = true; } Utf8_16_Read::~Utf8_16_Read() { if ((m_eEncoding == uni16BE) || (m_eEncoding == uni16LE)) { delete [] m_pNewBuf; m_pNewBuf = NULL; } } int Utf8_16_Read::isUTF8_16() { int rv=1; int ASCII7only=1; utf8 *sx = (utf8 *)m_pBuf; utf8 *endx = sx + m_nLen; while (sx=endx-1) break; if (!(*sx & 0x1F) || (sx[1]&(0x80+0x40)) != 0x80) { rv=0; break; } sx+=2; } else if (*sx < (0x80 + 0x40 + 0x20 + 0x10)) { // 1110qqqq 10xxxxvv 10nnnnnn If it begins with E, it is 16 bit ASCII7only=0; if (sx>=endx-2) break; if (!(*sx & 0xF) || (sx[1]&(0x80+0x40)) != 0x80 || (sx[2]&(0x80+0x40)) != 0x80) { rv=0; break; } sx+=3; } else { // more than 16 bits are not allowed here ASCII7only=0; rv=0; break; } } return(ASCII7only?0:rv); } size_t Utf8_16_Read::convert(char* buf, size_t len) { // bugfix by Jens Lorenz static size_t nSkip = 0; size_t ret = 0; m_pBuf = (ubyte*)buf; m_nLen = len; if (m_bFirstRead == true) { determineEncoding(); nSkip = m_nSkip; m_bFirstRead = false; } switch (m_eEncoding) { case uni8Bit: case uniCookie: { // Do nothing, pass through m_nBufSize = 0; m_pNewBuf = m_pBuf; ret = len; break; } case uniUTF8: { // Pass through after BOM m_nBufSize = 0; m_pNewBuf = m_pBuf + nSkip; ret = len - nSkip; break; } case uni16BE: case uni16LE: { size_t newSize = len + len / 2 + 1; if (m_nBufSize != newSize) { if (m_pNewBuf) delete [] m_pNewBuf; m_pNewBuf = NULL; m_pNewBuf = new ubyte[newSize]; m_nBufSize = newSize; } ubyte* pCur = m_pNewBuf; m_Iter16.set(m_pBuf + nSkip, len - nSkip, m_eEncoding); for (; m_Iter16; ++m_Iter16) { *pCur++ = m_Iter16.get(); } ret = pCur - m_pNewBuf; break; } default: break; } // necessary for second calls and more nSkip = 0; return ret; } void Utf8_16_Read::determineEncoding() { m_eEncoding = uni8Bit; m_nSkip = 0; if (m_nLen > 1) { if (m_pBuf[0] == k_Boms[uni16BE][0] && m_pBuf[1] == k_Boms[uni16BE][1]) { m_eEncoding = uni16BE; m_nSkip = 2; } else if (m_pBuf[0] == k_Boms[uni16LE][0] && m_pBuf[1] == k_Boms[uni16LE][1]) { m_eEncoding = uni16LE; m_nSkip = 2; } else if (m_nLen > 2 && m_pBuf[0] == k_Boms[uniUTF8][0] && m_pBuf[1] == k_Boms[uniUTF8][1] && m_pBuf[2] == k_Boms[uniUTF8][2]) { m_eEncoding = uniUTF8; m_nSkip = 3; } else if (isUTF8_16()) { m_eEncoding = uniCookie; m_nSkip = 0; } } } // ================================================================== Utf8_16_Write::Utf8_16_Write() { m_eEncoding = uni8Bit; m_pFile = NULL; m_pBuf = NULL; m_pNewBuf = NULL; m_bFirstWrite = true; m_nBufSize = 0; } Utf8_16_Write::~Utf8_16_Write() { fclose(); } FILE * Utf8_16_Write::fopen(const char *_name, const char *_type) { m_pFile = ::fopen(_name, _type); m_bFirstWrite = true; return m_pFile; } size_t Utf8_16_Write::fwrite(const void* p, size_t _size) { // no file open if (!m_pFile) { return 0; } size_t ret = 0; if (m_bFirstWrite) { switch (m_eEncoding) { case uniUTF8: { ::fwrite(k_Boms[m_eEncoding], 3, 1, m_pFile); break; } case uni16BE: case uni16LE: ::fwrite(k_Boms[m_eEncoding], 2, 1, m_pFile); break; default: // nothing to do break; } m_bFirstWrite = false; } switch (m_eEncoding) { case uni8Bit: case uniCookie: case uniUTF8: { // Normal write ret = ::fwrite(p, _size, 1, m_pFile); break; } case uni16BE: case uni16LE: { if (_size > m_nBufSize) { m_nBufSize = _size; if (m_pBuf != NULL) delete [] m_pBuf; m_pBuf = NULL; m_pBuf = new utf16[_size + 1]; } Utf8_Iter iter8; iter8.set(static_cast(p), _size, m_eEncoding); utf16* pCur = m_pBuf; for (; iter8; ++iter8) { if (iter8.canGet()) { *pCur++ = iter8.get(); } } ret = ::fwrite(m_pBuf, (const char*)pCur - (const char*)m_pBuf, 1, m_pFile); break; } default: break; } return ret; } size_t Utf8_16_Write::convert(char* p, size_t _size) { if (m_pNewBuf) { delete [] m_pNewBuf; } switch (m_eEncoding) { case uni8Bit: case uniCookie: { // Normal write m_nBufSize = _size; m_pNewBuf = (ubyte*)new ubyte[m_nBufSize]; memcpy(m_pNewBuf, p, _size); break; } case uniUTF8: { m_nBufSize = _size + 3; m_pNewBuf = (ubyte*)new ubyte[m_nBufSize]; memcpy(m_pNewBuf, k_Boms[m_eEncoding], 3); memcpy(&m_pNewBuf[3], p, _size); break; } case uni16BE: case uni16LE: { m_pNewBuf = (ubyte*)new ubyte[sizeof(utf16) * (_size + 1)]; if (m_eEncoding == uni16BE || m_eEncoding == uni16LE) { // Write the BOM memcpy(m_pNewBuf, k_Boms[m_eEncoding], 2); } Utf8_Iter iter8; iter8.set(reinterpret_cast(p), _size, m_eEncoding); utf16* pCur = (utf16*)&m_pNewBuf[2]; for (; iter8; ++iter8) { if (iter8.canGet()) { *pCur++ = iter8.get(); } } m_nBufSize = (const char*)pCur - (const char*)m_pNewBuf; } default: break; } return m_nBufSize; } void Utf8_16_Write::setEncoding(UniMode eType) { m_eEncoding = eType; } void Utf8_16_Write::fclose() { if (m_pNewBuf) delete [] m_pNewBuf; if (m_pFile) ::fclose(m_pFile); } //================================================================= Utf8_Iter::Utf8_Iter() { reset(); } void Utf8_Iter::reset() { m_pBuf = NULL; m_pRead = NULL; m_pEnd = NULL; m_eState = eStart; m_nCur = 0; m_eEncoding = uni8Bit; } void Utf8_Iter::set(const ubyte* pBuf, size_t nLen, UniMode eEncoding) { m_pBuf = pBuf; m_pRead = pBuf; m_pEnd = pBuf + nLen; m_eEncoding = eEncoding; operator++(); // Note: m_eState, m_nCur not set } // Go to the next byte. void Utf8_Iter::operator++() { switch (m_eState) { case eStart: if (*m_pRead < 0x80) { m_nCur = *m_pRead; toStart(); } else if (*m_pRead < 0xE0) { m_nCur = static_cast((0x1F & *m_pRead) << 6); m_eState = e2Bytes_Byte2; } else { m_nCur = static_cast((0xF & *m_pRead) << 12); m_eState = e3Bytes_Byte2; } break; case e2Bytes_Byte2: case e3Bytes_Byte3: m_nCur |= static_cast(0x3F & *m_pRead); toStart(); break; case e3Bytes_Byte2: m_nCur |= static_cast((0x3F & *m_pRead) << 6); m_eState = e3Bytes_Byte3; break; } ++m_pRead; } void Utf8_Iter::toStart() { m_eState = eStart; if (m_eEncoding == uni16BE) { swap(); } } void Utf8_Iter::swap() { utf8* p = reinterpret_cast(&m_nCur); utf8 swapbyte = *p; *p = *(p + 1); *(p + 1) = swapbyte; } //================================================== Utf16_Iter::Utf16_Iter() { reset(); } void Utf16_Iter::reset() { m_pBuf = NULL; m_pRead = NULL; m_pEnd = NULL; m_eState = eStart; m_nCur = 0; m_nCur16 = 0; m_eEncoding = uni8Bit; } void Utf16_Iter::set(const ubyte* pBuf, size_t nLen, UniMode eEncoding) { m_pBuf = pBuf; m_pRead = pBuf; m_pEnd = pBuf + nLen; m_eEncoding = eEncoding; m_eState = eStart; operator++(); // Note: m_eState, m_nCur, m_nCur16 not reinitalized. } // Goes to the next byte. // Not the next symbol which you might expect. // This way we can continue from a partial buffer that doesn't align void Utf16_Iter::operator++() { switch (m_eState) { case eStart: if (m_eEncoding == uni16LE) { m_nCur16 = *m_pRead++; m_nCur16 |= static_cast(*m_pRead << 8); } else { m_nCur16 = static_cast(*m_pRead++ << 8); m_nCur16 |= *m_pRead; } ++m_pRead; if (m_nCur16 < 0x80) { m_nCur = static_cast(m_nCur16 & 0xFF); m_eState = eStart; } else if (m_nCur16 < 0x800) { m_nCur = static_cast(0xC0 | m_nCur16 >> 6); m_eState = e2Bytes2; } else { m_nCur = static_cast(0xE0 | m_nCur16 >> 12); m_eState = e3Bytes2; } break; case e2Bytes2: case e3Bytes3: m_nCur = static_cast(0x80 | m_nCur16 & 0x3F); m_eState = eStart; break; case e3Bytes2: m_nCur = static_cast(0x80 | ((m_nCur16 >> 6) & 0x3F)); m_eState = e3Bytes3; break; } }