280 lines
7.6 KiB
Plaintext
280 lines
7.6 KiB
Plaintext
|
from __future__ import print_function
|
||
|
|
||
|
try:
|
||
|
raw_input # Python 2
|
||
|
except NameError:
|
||
|
raw_input = input # Python 3
|
||
|
|
||
|
try:
|
||
|
xrange # Python 2
|
||
|
except NameError:
|
||
|
xrange = range # Python 3
|
||
|
|
||
|
# Accept No. of Nodes and edges
|
||
|
n, m = map(int, raw_input().split(" "))
|
||
|
|
||
|
# Initialising Dictionary of edges
|
||
|
g = {}
|
||
|
for i in xrange(n):
|
||
|
g[i + 1] = []
|
||
|
|
||
|
"""
|
||
|
--------------------------------------------------------------------------------
|
||
|
Accepting edges of Unweighted Directed Graphs
|
||
|
--------------------------------------------------------------------------------
|
||
|
"""
|
||
|
for _ in xrange(m):
|
||
|
x, y = map(int, raw_input().split(" "))
|
||
|
g[x].append(y)
|
||
|
|
||
|
"""
|
||
|
--------------------------------------------------------------------------------
|
||
|
Accepting edges of Unweighted Undirected Graphs
|
||
|
--------------------------------------------------------------------------------
|
||
|
"""
|
||
|
for _ in xrange(m):
|
||
|
x, y = map(int, raw_input().split(" "))
|
||
|
g[x].append(y)
|
||
|
g[y].append(x)
|
||
|
|
||
|
"""
|
||
|
--------------------------------------------------------------------------------
|
||
|
Accepting edges of Weighted Undirected Graphs
|
||
|
--------------------------------------------------------------------------------
|
||
|
"""
|
||
|
for _ in xrange(m):
|
||
|
x, y, r = map(int, raw_input().split(" "))
|
||
|
g[x].append([y, r])
|
||
|
g[y].append([x, r])
|
||
|
|
||
|
"""
|
||
|
--------------------------------------------------------------------------------
|
||
|
Depth First Search.
|
||
|
Args : G - Dictionary of edges
|
||
|
s - Starting Node
|
||
|
Vars : vis - Set of visited nodes
|
||
|
S - Traversal Stack
|
||
|
--------------------------------------------------------------------------------
|
||
|
"""
|
||
|
|
||
|
|
||
|
def dfs(G, s):
|
||
|
vis, S = set([s]), [s]
|
||
|
print(s)
|
||
|
while S:
|
||
|
flag = 0
|
||
|
for i in G[S[-1]]:
|
||
|
if i not in vis:
|
||
|
S.append(i)
|
||
|
vis.add(i)
|
||
|
flag = 1
|
||
|
print(i)
|
||
|
break
|
||
|
if not flag:
|
||
|
S.pop()
|
||
|
|
||
|
|
||
|
"""
|
||
|
--------------------------------------------------------------------------------
|
||
|
Breadth First Search.
|
||
|
Args : G - Dictionary of edges
|
||
|
s - Starting Node
|
||
|
Vars : vis - Set of visited nodes
|
||
|
Q - Traveral Stack
|
||
|
--------------------------------------------------------------------------------
|
||
|
"""
|
||
|
from collections import deque
|
||
|
|
||
|
|
||
|
def bfs(G, s):
|
||
|
vis, Q = set([s]), deque([s])
|
||
|
print(s)
|
||
|
while Q:
|
||
|
u = Q.popleft()
|
||
|
for v in G[u]:
|
||
|
if v not in vis:
|
||
|
vis.add(v)
|
||
|
Q.append(v)
|
||
|
print(v)
|
||
|
|
||
|
|
||
|
"""
|
||
|
--------------------------------------------------------------------------------
|
||
|
Dijkstra's shortest path Algorithm
|
||
|
Args : G - Dictionary of edges
|
||
|
s - Starting Node
|
||
|
Vars : dist - Dictionary storing shortest distance from s to every other node
|
||
|
known - Set of knows nodes
|
||
|
path - Preceding node in path
|
||
|
--------------------------------------------------------------------------------
|
||
|
"""
|
||
|
|
||
|
|
||
|
def dijk(G, s):
|
||
|
dist, known, path = {s: 0}, set(), {s: 0}
|
||
|
while True:
|
||
|
if len(known) == len(G) - 1:
|
||
|
break
|
||
|
mini = 100000
|
||
|
for i in dist:
|
||
|
if i not in known and dist[i] < mini:
|
||
|
mini = dist[i]
|
||
|
u = i
|
||
|
known.add(u)
|
||
|
for v in G[u]:
|
||
|
if v[0] not in known:
|
||
|
if dist[u] + v[1] < dist.get(v[0], 100000):
|
||
|
dist[v[0]] = dist[u] + v[1]
|
||
|
path[v[0]] = u
|
||
|
for i in dist:
|
||
|
if i != s:
|
||
|
print(dist[i])
|
||
|
|
||
|
|
||
|
"""
|
||
|
--------------------------------------------------------------------------------
|
||
|
Topological Sort
|
||
|
--------------------------------------------------------------------------------
|
||
|
"""
|
||
|
from collections import deque
|
||
|
|
||
|
|
||
|
def topo(G, ind=None, Q=[1]):
|
||
|
if ind == None:
|
||
|
ind = [0] * (len(G) + 1) # SInce oth Index is ignored
|
||
|
for u in G:
|
||
|
for v in G[u]:
|
||
|
ind[v] += 1
|
||
|
Q = deque()
|
||
|
for i in G:
|
||
|
if ind[i] == 0:
|
||
|
Q.append(i)
|
||
|
if len(Q) == 0:
|
||
|
return
|
||
|
v = Q.popleft()
|
||
|
print(v)
|
||
|
for w in G[v]:
|
||
|
ind[w] -= 1
|
||
|
if ind[w] == 0:
|
||
|
Q.append(w)
|
||
|
topo(G, ind, Q)
|
||
|
|
||
|
|
||
|
"""
|
||
|
--------------------------------------------------------------------------------
|
||
|
Reading an Adjacency matrix
|
||
|
--------------------------------------------------------------------------------
|
||
|
"""
|
||
|
|
||
|
|
||
|
def adjm():
|
||
|
n, a = input(), []
|
||
|
for i in xrange(n):
|
||
|
a.append(map(int, raw_input().split()))
|
||
|
return a, n
|
||
|
|
||
|
|
||
|
"""
|
||
|
--------------------------------------------------------------------------------
|
||
|
Floyd Warshall's algorithm
|
||
|
Args : G - Dictionary of edges
|
||
|
s - Starting Node
|
||
|
Vars : dist - Dictionary storing shortest distance from s to every other node
|
||
|
known - Set of knows nodes
|
||
|
path - Preceding node in path
|
||
|
--------------------------------------------------------------------------------
|
||
|
"""
|
||
|
|
||
|
|
||
|
def floy(A_and_n):
|
||
|
(A, n) = A_and_n
|
||
|
dist = list(A)
|
||
|
path = [[0] * n for i in xrange(n)]
|
||
|
for k in xrange(n):
|
||
|
for i in xrange(n):
|
||
|
for j in xrange(n):
|
||
|
if dist[i][j] > dist[i][k] + dist[k][j]:
|
||
|
dist[i][j] = dist[i][k] + dist[k][j]
|
||
|
path[i][k] = k
|
||
|
print(dist)
|
||
|
|
||
|
|
||
|
"""
|
||
|
--------------------------------------------------------------------------------
|
||
|
Prim's MST Algorithm
|
||
|
Args : G - Dictionary of edges
|
||
|
s - Starting Node
|
||
|
Vars : dist - Dictionary storing shortest distance from s to nearest node
|
||
|
known - Set of knows nodes
|
||
|
path - Preceding node in path
|
||
|
--------------------------------------------------------------------------------
|
||
|
"""
|
||
|
|
||
|
|
||
|
def prim(G, s):
|
||
|
dist, known, path = {s: 0}, set(), {s: 0}
|
||
|
while True:
|
||
|
if len(known) == len(G) - 1:
|
||
|
break
|
||
|
mini = 100000
|
||
|
for i in dist:
|
||
|
if i not in known and dist[i] < mini:
|
||
|
mini = dist[i]
|
||
|
u = i
|
||
|
known.add(u)
|
||
|
for v in G[u]:
|
||
|
if v[0] not in known:
|
||
|
if v[1] < dist.get(v[0], 100000):
|
||
|
dist[v[0]] = v[1]
|
||
|
path[v[0]] = u
|
||
|
|
||
|
|
||
|
"""
|
||
|
--------------------------------------------------------------------------------
|
||
|
Accepting Edge list
|
||
|
Vars : n - Number of nodes
|
||
|
m - Number of edges
|
||
|
Returns : l - Edge list
|
||
|
n - Number of Nodes
|
||
|
--------------------------------------------------------------------------------
|
||
|
"""
|
||
|
|
||
|
|
||
|
def edglist():
|
||
|
n, m = map(int, raw_input().split(" "))
|
||
|
l = []
|
||
|
for i in xrange(m):
|
||
|
l.append(map(int, raw_input().split(' ')))
|
||
|
return l, n
|
||
|
|
||
|
|
||
|
"""
|
||
|
--------------------------------------------------------------------------------
|
||
|
Kruskal's MST Algorithm
|
||
|
Args : E - Edge list
|
||
|
n - Number of Nodes
|
||
|
Vars : s - Set of all nodes as unique disjoint sets (initially)
|
||
|
--------------------------------------------------------------------------------
|
||
|
"""
|
||
|
|
||
|
|
||
|
def krusk(E_and_n):
|
||
|
# Sort edges on the basis of distance
|
||
|
(E, n) = E_and_n
|
||
|
E.sort(reverse=True, key=lambda x: x[2])
|
||
|
s = [set([i]) for i in range(1, n + 1)]
|
||
|
while True:
|
||
|
if len(s) == 1:
|
||
|
break
|
||
|
print(s)
|
||
|
x = E.pop()
|
||
|
for i in xrange(len(s)):
|
||
|
if x[0] in s[i]:
|
||
|
break
|
||
|
for j in xrange(len(s)):
|
||
|
if x[1] in s[j]:
|
||
|
if i == j:
|
||
|
break
|
||
|
s[j].update(s[i])
|
||
|
s.pop(i)
|
||
|
break
|